
ANSYS°

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

Ray Browell

nVidia Technology Theater

SC12 – November 13, 2012

HPC Revolution

- Recent advancements have revolutionized the computational speed available on the desktop
 - Multi-core processors

Every core is really an independent processor

Large amounts of RAM and

-GPUs

- "Accelerate" Sparse direct equation solver (SMP & DMP)
 - GPU is used to factor many dense "frontal" matrices
 - Decision is made automatically on when to send data to GPU
 - "Frontal matrix" too small, too much overhead, stays on CPU
 - · "Frontal matrix" too large, exceeds GPU memory, only partially accelerated
- "Accelerate" PCG/JCG iterative solvers (SMP & DMP)
 - GPU is only used for sparse-matrix vector multiply (SpMV kernel)
 - Decision is made automatically on when to send data to GPU
 - Model too small, too much overhead, stays on CPU
 - Model too large, exceeds GPU memory, only partially accelerated

Supported hardware

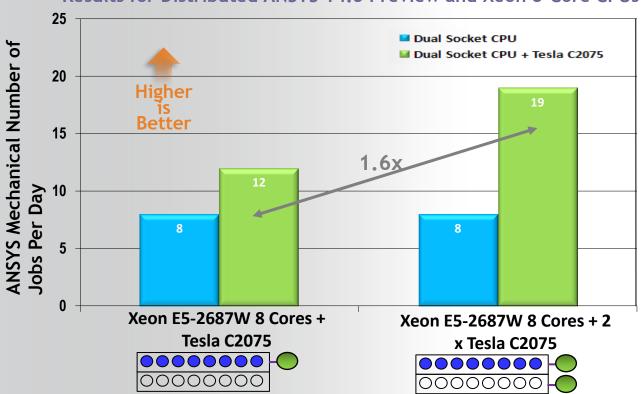
- Currently support NVIDIA Tesla 20-series, Quadro 6000, and Quadro K5000 cards
- Next generation NVIDIA Tesla cards (Kepler) should work with **ANSYS R14.5**
- Installing a GPU requires the following:
 - Larger power supply (single card needs ~250W)
 - Open 2x form factor PCle x16 2.0 (or 3.0) slot

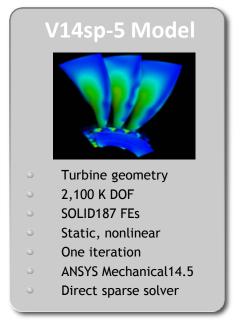
Supported platforms

- Windows and Linux 64-bit platforms only
 - Does not include Linux Itanium (IA-64) platform

Targeted hardware

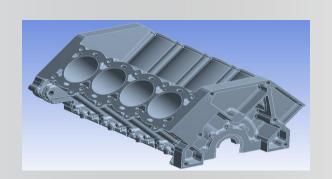
	NVIDIA Tesla C2075	NVIDIA Tesla M2090	NVIDIA Quadro 6000	NVIDIA Quadro K5000 [†]	NVIDIA Tesla K10	NVIDIA Tesla K20 [†]
Power (W)	225	250	225	122	250	250
Memory	6 GB	6 GB	6 GB	4 GB	8 GB	6 to 24 GB
Memory Bandwidth (GB/s)	144	177.4	144	173	320	288
Peak Speed SP/DP (GFlops)	1030/515	1331/665	1030/515	2290/95	4577/190	5184/1728


[†] These NVIDIA "Kepler" based products are not released yet, so specifications may be incorrect

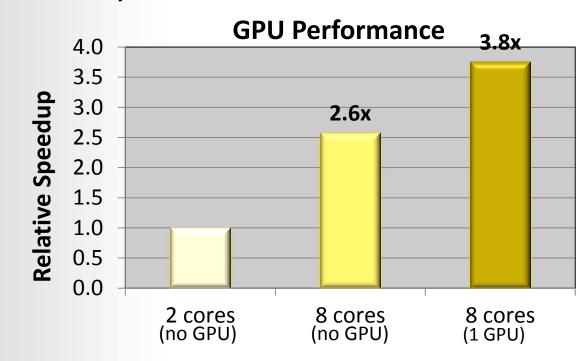

- Supports majority of ANSYS users
 - Covers both sparse direct and PCG iterative solvers
 - Only a few minor limitations
- Ease of use
 - Requires at least one supported GPU card to be installed
 - Requires at least one HPC pack license
 - No rebuild, no additional installation steps
- Performance
 - ~10-25% reduction in time to solution when using 8 CPU cores
 - Should never slow down your simulation!

ANSYS Mechanical 14.5 Preview

Results for Distributed ANSYS 14.5 Preview and Xeon 8-Core CPUs

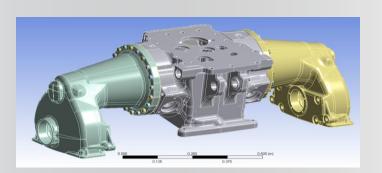


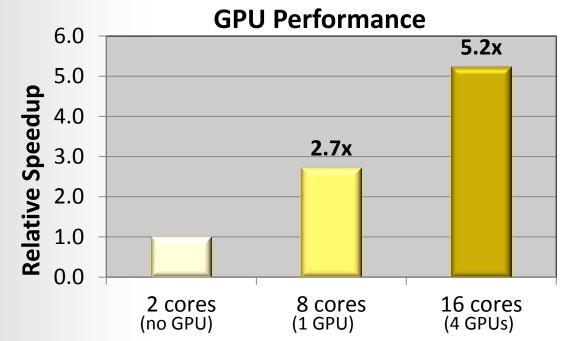
Results from HP Z820; 2 x Xeons (16 Cores, use of only 8) 128GB memory, Win7; 2 x Tesla C2075



ANSYS Structural GPU Accelerator Capability

GPUs can offer significantly faster time to solution


- 6.5 million DOF
- Linear static analysis
- Sparse solver (DMP)
- 2 Intel Xeon E5-2670 (2.6 GHz, 16 cores total), 128 GB RAM, SSD, 4 Tesla C2075, Win7

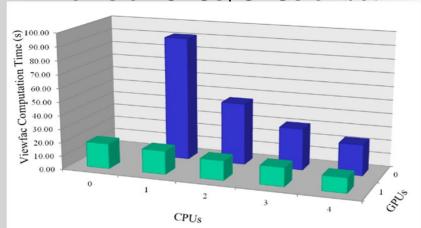


ANSYS Structural GPU Accelerator Capability

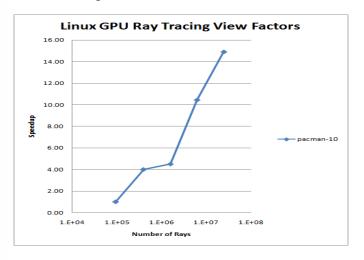
GPUs can offer significantly faster time to solution

- 11.8 million DOF
- Linear static analysis
- PCG solver (DMP)
- 2 Intel Xeon E5-2670 (2.6 GHz, 16 cores total), 128 GB RAM, SSD, 4 Tesla C2075, Win7

ANSYS and NVIDIA Collaboration


Release	ANSYS Mechanical	ANSYS Fluent	
13.0 Dec 2010	Shared Memory Solvers; Single Node/ Single GPU		
14.0 Dec 2011	+ Distributed ANSYS; Multi-node / 1 GPU/node	Radiation Heat Transfer (beta)	
14.5 Nov 2012	+ Multi-GPU / node; + Hybrid PCG;	+ GPU AMG Solver (beta), Single GPU	

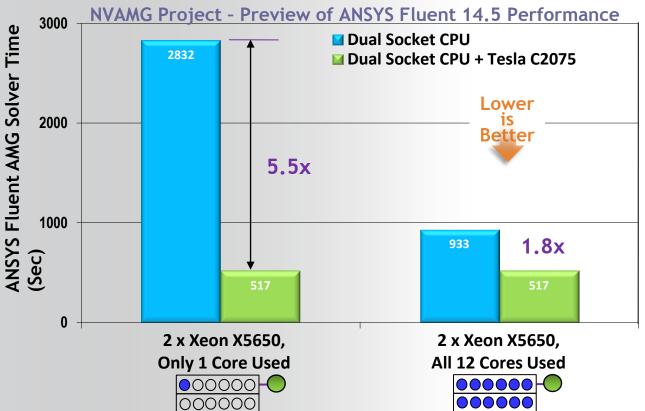
Fluent Radiation Modeling on GPUs


VIEWFAC

- Utility to compute view factors
- Hybrid MPI-OpenMP-OpenCL parallel implementation
- Works on CPUs, GPUs or both

RAY TRACING

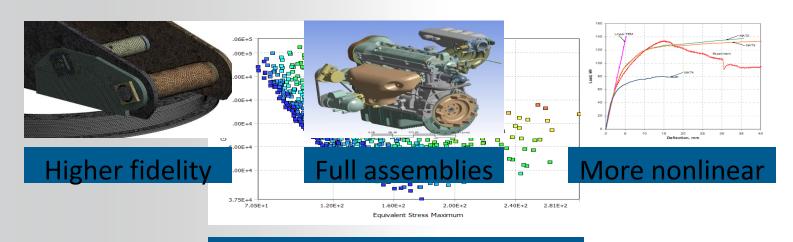
- Utility to compute view factors
- Uses Optix on NVIDIA C2070



Available as full features in 14.5

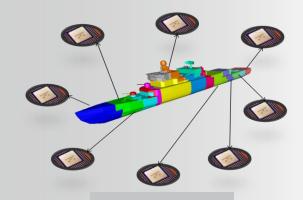
Fluent AMG Solver on GPUs

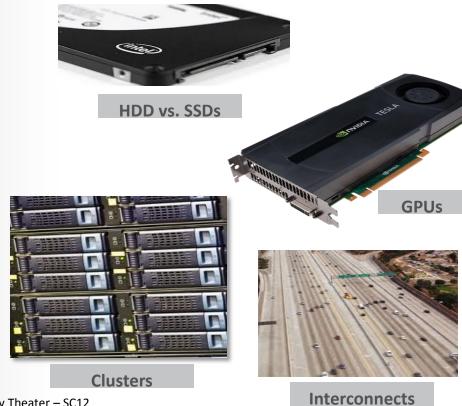
Work-in-Progress



NOTE: All jobs solver time only, ~65% of total time

ANSYS Design Optimization


How will you use all of this computing power?


Design Optimization Studies

HPC Revolution

The right combination of algorithms and hardware leads to maximum efficiency

Improving Engineering Productivity with HPC and GPU-Accelerated Simulation

Thank You!

Raymond Browell

724.514.3070

Ray.Browell@ansys.com