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a b s t r a c t

To obtain, over medium term periods, wind speed time series on a site, located in the southern part of the
Paris region (France), where long recording are not available, but where nearby meteorological stations
provide large series of data, use was made of ANN based models. The performance of these models have
been evaluated by using several commonly used statistics such as average absolute error, root mean
square error, normalized mean square error, and correlation coefficient. Such global criteria are good
indicators of the ‘‘robustness’’ of the models but are unable to provide useful information about their
‘‘effectiveness’’ in accurately generating wind speed fluctuations over a wide range of scales. Therefore
a complementary wavelet cross coherence analysis has been performed. Wavelet cross coherence,
wavelet cross-correlation and spectral wavelet cross-correlation coefficients, have been calculated and
displayed as functions of the equivalent Fourier period. These coefficients provide quantitative measures
of the scale-dependence of the model performance. In particular the spectral wavelet cross coherence
coefficient can be used to have a rapid and efficient identification of the validity range of the models. The
results show that the ANN models employed in this study are only effective in computing large-scale
fluctuations of large amplitude. To obtain a more representative time series, with much higher resolu-
tion, small-scale fluctuations have to be simulated by a superimposed statistical model. By combining
ANN and statistical models, both the high and the low-frequency segments of the wind velocity spectra
can be simulated, over a range of several hours, at the target site.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The planetary boundary layer is the lowest region of the
atmosphere, directly influenced by the presence of the underlying
earth surface. In the lowest part of this area (surface layer) wind
represents a clean, abundant and inexhaustible energy source.
Therefore, in the renewable industry, large series of wind speed
data are needed: to identify potential wind turbine sites, to assess
the wind energy resource of selected locations, to evaluate, by
numerical simulations, the power values produced by wind energy
conversion systems [1] or to estimate external load situations that
drive the design of the structural components. As measured data, or
records of sufficient duration, are not available for most sites,
appropriate wind speed time series may be estimated from rela-
tionship of wind speed among several instrumented sites,
submitted to the same climatic constraints.

In practice, the long-term trend of the time series, dominated
by macro meteorological influences (with time scales of the order
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of a week), can be successfully estimated with Artificial Neural
Networks (ANN) based models [2,3]. The short-term turbulent
variations (with time scales of the order of a minute), due to local
topographic and terrain effects, can be obtained by using statis-
tical models [4]. In the medium term range, i.e. for considerations
over several hours to a few days, the wind speed fluctuations are
influenced by the prevailing large-scale motions as well as by
micro-scale phenomena such as turbulence. As a result, two
models must be combined, one for the large-scale fluctuations
and one for the small [5]. Therefore, when ANN based models are
used to estimate wind speed, in the medium term range, their
performances must be evaluated for all the scales between the
macro- and micro-scales. Normally, only a few global statistical
performance measures, such as correlation coefficient (R) or root
mean square error (RMSE), are employed. But such statistics are
not good indicators of the ‘‘effectiveness’’ of a model in terms of
its ability to accurately predict low, medium, and high frequencies
fluctuations. Since no appropriate statistic, to quantify the time-
scale quality of generated wind speed series, has been found in
the literature, a wavelet cross-correlation analysis has been per-
formed. In this work, wavelet based coefficients have been used
to assess the overall applicability of ANN based models used to
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estimate wind speed data at a given test site, located in Evry
(France).

2. Wind model

In the atmospheric boundary layer wind is an incompressible,
unsteady, air flow composed of eddies interacting with each other.
It consists of a wide spectrum of eddy size ranging from large
eddies, corresponding to large atmospheric phenomena, to small
eddies, corresponding to atmospheric turbulence. In the near
surface layer, velocity measured at a given point M, fluctuates over
time. Over time periods spread, in practice, between 10 min and
1 h, in a classical stationary approximation, wind velocity can be
separated into a constant mean component and a fluctuating
component (turbulence) considered as a stationary random
process, with normal distribution. Over larger time-period, i.e. over
periods of hours and days, 10-min (or hourly) mean wind is subject
to a significant temporal trend and the instantaneous time-varying
wind speed, u!ðM; tÞ, can be expressed by a superposition of high-
frequency oscillation of small amplitude u!0ðM; tÞ around a much
more slowly varying sustained speed in a prevailing direction,
U
!ðM; tÞ [6]

u!ðM; tÞ ¼ U
!ðM; tÞ þ u!0ðM; tÞ (1)

Compared to the stationary wind speed model, which assumes that
the first term is a constant mean speed, this model introduces a slow
time-varying component, which is the sum of the overall time-

mean value U
!ðMÞ and low-frequency fluctuation

e
U
!ðM; tÞ (see Fig. 1)

U
!ðM; tÞ ¼ U

!ðMÞ þ U
!e ðM; tÞ (2)

A strong relationship between meteorological scales and
frequency of wind speed fluctuations is assumed: low-frequency
fluctuations are dominated by macro meteorological phenomena
(large-scales flows). Thus, at a target site, slowly time-varying wind
speed series can be successfully computed with models using, as
input arguments, data recorded in meteorological stations
submitted to the same climatic constraints (i.e. located within
a radius of a few kilometres). On the contrary, the high-frequency
fluctuations, i.e. with typical time scales ranging from seconds-to-
few minutes, depend on the neighbouring environment of the place
where they are observed. On this scale, random behaviour can be
assumed and fluctuations can be obtained by using suitable
statistical models with turbulence intensity, standard deviations
and spectrum, which can be characterised by few local parameters,
as basic inputs [7]. Since several models could be used for gener-
ating accurate wind series, the validity range of each model must be
clearly defined.
Fig. 1. Wind speed components.
3. Site, methodology and models description

3.1. Site and methodology

In the southern part of the Paris region (France), in autumn,
stable conditions are dominant, the prevailing winds (gentle to
moderate breeze) are westerly, or south-westerly, and correspond
to air masses coming from the Atlantic and crossing the country
from west-to-east. During this season, suitable ANNs were set up to
obtain wind speed data, over medium term periods, at a typical
suburban site, located in Evry, using data from three airport
meteorological stations (Orly, Brétigny, Melun-Villaroche), see
Fig. 2. The development of such models involves the following steps
[2,3,8,9]: (I) wind velocity measurement at the test site, selection of
the training, test and validation data sets, (II) identification of the
input and output variables, (III) selection of the network’s archi-
tecture, training of the models, (IV) validation of the models using
various global evaluation statistics, and (V) assessment of the time-
scale quality of the generated wind speed series, as explained in
this paper.

3.2. Selection of data sets

The available data, at the reference stations, were the 10-min
average horizontal wind speeds, simultaneously recorded, at 10 m
above the ground, every 6 min, by the French meteorological
office and noted U

!
hðM; tÞ. This wind speed can be split into two

perpendicular wind components U and V. U is the component of
the horizontal wind from the east (a positive U component
represents wind blowing from the east), and V is the component
of the horizontal wind from the north. To collect concurrent data
at the test site, use was made of a cup anemometer and of
a potentiometer driven wind direction indicator. Data were
sampled on a PC and then processed to obtain appropriate values.
The measurements were performed in November. Two separate
data sets have been chosen: a training set, which contained 9000
representative meteorological data, and a verification set, recor-
ded one year later. The training data set, in which the number of
high wind speed (>7 m/s) was significantly less than the number
of low and medium wind speed, has been split into two smaller
sets and used to adjust and test the parameters of the ANN. The
verification data set covered a period of 7 days and consisted of
relatively low wind speed (<3 m/s, see Fig. 8). It has been used to
check the quality of the generated data. Both of them corre-
sponded to meteorological situations typical of the considered
site, in the autumn months.

3.3. Identification of the input and output variables

Comparison of the measurements made at Evry (built-up
suburb) with those made at the airport stations (flat terrains)
indicated that, even when there was an enormous speed difference,
a shape similarity in wind profiles exists. To get a quantitative
measure of the relatedness of the data, a classical cross-correlation
analysis has been performed. This analysis has confirmed that the
measurements, at the test site, were related to those made simul-
taneously at the 3 surrounding stations (even when one of them is
leeward). But it is clear that such an analysis is biased towards the
large-scale dynamic processes of large amplitude. Therefore, to
obtain useful information concerning the behaviour of the inter-
mediate and small-scale dynamics, the P previous measurements
have also been used as inputs. P was determined using a trial and
error procedure: the input vector was modified by successively
adding antecedent values. A new model was developed each time,
the best one was selected based on the analysis of the normalized
mean square training error (see below). We concluded that, to



Fig. 2. Geographical localisation of the test site.
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estimate the wind speed components, at Evry, at time t (network’s
output), the most recent 4 values (P¼ 3), from t� 3 backwards, of
both the U and V components, observed in the three stations, were
of interest.
Table 1
3.4. Selection of the network architecture, training of the models

We set up a feed forward artificial neural network for each
speed component. Multilayer feed forward networks were
chosen because they ‘‘have been widely used as time series
forecasters’’ [10] and allow the prediction of wind speed at one
site based on measurements at other sites [3]. Since the
networks structure is not a key issue in this paper, the networks
parameters will be outlined briefly, for further details the reader
is referred to Ref. [9]. The architecture that was ultimately
selected was composed of a single hidden layer. Activation
functions were hyperbolic tangent for the hidden layer and
linear in the output layer. The number of hidden neurons was
determined using a trial and error procedure. This number was
varied from 2 to 20. For each value, the Levenberg Marquardt
training algorithm was used to minimize the normalized mean
square training error, at the output layer. The optimum number
of hidden neurons was determined to be 12 for the U compo-
nent, and 10 for the V component., see Table 1
Characteristics of the ANN based models

Model for U Model for V

Activation functions for the input layer Linear
Activation functions for the hidden layer Hyperbolic tangent
Activation functions for the output layer Linear
Inputs (i¼Orly, Brétigny, Melun) Ui(t), Ui(t�1),., Ui(t�3)

Vi(t), Vi(t�1),., Vi(t�3)
Output Uevry(t) Vevry(t)
Number of neurons in the hidden layer 12 10
4. Evaluating model performance

4.1. By using global statistics

The performance of a model can be defined as its ability to
reproduce series of data which were unknown during the
building phases. Therefore our models can be assessed by
performing a term-by-term comparison between the experi-
mental verification data, represented by rt (t¼ 1 to N), and the
computed data, represented by ct (t¼ 1 to N). At each time t, the
difference between the computed and observed values,
et¼ ct� rt, can be calculated. By averaging the errors over the full
data set, the average absolute error (AAE) [11] may be computed
using the following expression:

AAE ¼ 1
N

XN

t¼1

jet j (3)

It is clear, from this definition, that small values of this statistics
indicate good estimation capabilities of the model. As performance
measures, other well accepted criteria are root mean square error
(RMSE) [12] and normalized mean square error (NMSE), which is
also known as the average relative variance (ARV) (the Nash–Sut-
cliffe efficiency (E), used in some references [13], can be derived
from the NMSE, E¼ 1�NMSE). The first one is simply defined as
the square root of the mean square error, the second is the ratio of
the mean square error over the natural variance of the measured
variable s2

r :
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RMSE ¼
 

1
N

XN

t¼1

e2
t

!1=2

(4)

NMSE ¼ 1
s2

r

1
N

XN

t¼1

e2
t (5)

A value of NMSE¼ 0 indicates perfect prediction while a value of
NMSE¼ 1 corresponds to the prediction of the statistical average
[14]. The correlation coefficient (R) quantifies the degree of similarity
between the estimated and the measured values. It is defined as:

R ¼

1
N

XN

t¼1

ðrt � rÞðct � cÞ

srsc
(6)

where c is the mean value, sc is the standard deviation of the
computed wind series, r and s are the mean value and standard
deviation of the observed series. The values of (R) close to 1 indicate
good model performance. In a traditional evaluation approach,
these statistics are good indicators of the ‘‘robustness’’ of the model
and provide a quantitative measure of its ‘‘efficiency’’ in capturing
the complex relationships between wind data values collected on
several locations. However, such error statistics are not good indi-
cators of the ‘‘effectiveness’’ in accurately estimating non-
stationary wind speed data with both high and the low-frequency
fluctuations: the square terms in RMSE and NMSE places a bias on
the low-frequency fluctuations (large-scale atmospheric motions)
which are of large amplitude, therefore the errors in estimating the
high-frequency oscillation of small amplitude will not get sufficient
representation. Moreover, the correlation coefficient becomes
invalid if the series include non-stationary components and/or are
‘‘characterised by highly variable processes occurring over a wide
range of scales’’ [15].

4.2. By using wavelets analysis

So, to measure the accuracy of the model, at each scale of fluc-
tuations, we have developed a technique based on wavelet cross-
correlation analysis. During the last decade, wavelets have been
extensively employed as a tool to analyse measured data, but also,
in the area of wind engineering, to analyse wind effects on struc-
tures [16] or to evaluate the quality of synthetic wind speed signals
[4]. The aim of a wavelet analysis is to determine a time-frequency
representation of a series and to assess the temporal variation of
the different frequencies involved. The continuous wavelet trans-
form (CWT) of a signal c(t) is given as

CWT½cðtÞ� ¼ Wcða; bÞ ¼
Z þN

�N
cðtÞj*

a;bðtÞdt (7)

ja;bðtÞ ¼ ð1=
ffiffiffi
a
p
Þjððt � bÞ=aÞ is the analysis wavelet (mother

wavelet), it can be real or complex and must satisfy strict mathe-
matical conditions, * denotes the complex conjugate, a is the dila-
tation parameter (or scale) and b is the translation parameter, used
to adjust the shape and localisation of the wavelet, respectively in
scale and time domains. Low parameters a compress the wavelet, in
order to analyse high frequency of the series, while high values of
a dilate the wavelet so as to analyse low-frequency components, in
the neighbourhood of b. The wavelet analysis results in a set of
wavelet coefficients which indicate how similar the time series is to
the analysis wavelet at different scales and positions. It is clear that
the results strongly depend on the choice of the wavelet function
and that this function must reflect the characteristics of the series.
In this study, the Mexican hat wavelet (MHW), or Maar wavelet, has
been chosen. This real-value function has been successfully
employed for the identification of events such as maxima, slow rise
or sudden drop in temporal series and has been used in atmo-
spheric studies [17]. It is the second derivative of the Gaussian
function, given as

jðtÞ ¼
�
1� t2�e�t2=2 (8)

The wavelet power spectrum, which is also known as the scalo-
gram, can be defined as

SWcða; bÞ ¼ Wcða;bÞW*
c ða;bÞ ¼ jWcða; bÞj2 (9)

A cross wavelet power spectrum, or coscalogram, can be defined
between two time series, c(t) and r(t), by replacing the square
coefficient term with the product of the coefficients of each
series

SWcrða; bÞ ¼ Wcða; bÞW*
r ða; bÞ (10)

When the analysis wavelet is complex, SWcr(a,b) is complex, and
can be separated into real and imaginary parts, called wavelet co-
and quadratur-spectrum respectively [18]. The wavelet cross-
correlation function [19] for a given scale a and a given time lag s
can be written as

WCcrða; sÞ ¼ Wcða;bÞWrða; bþ sÞ (11)

where the overbar indicates a time average. If the mother
wavelet is complex, this function consists of a real part RWCcr(a,s)
and an imaginary part IWCcr(A,s). For this study, another function,
which we had defined in a previous paper [20], could be used:
the spectral wavelet cross-correlation function that can be
written as

SWCcrða; sÞ ¼ SWcða; bÞSWrða; bþ sÞ (12)

All these functions permit the definition of complementary
wavelet correlation coefficients, with values ranging from 0 to 1.
The cross wavelet coherence coefficient has been introduced [18] to
measure the ‘‘intensity coherence’’ of the series

CWCFða;bÞ ¼ 2jSWcrða; bÞj2

jWcða; bÞj4þjWrða; bÞj4
(13)

The wavelet cross-correlation coefficient has been defined ‘‘to
overcome the limitations of classical cross-correlation analysis’’
[19]

WRcrða; sÞ ¼
RWCcrða; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RWCccða;0ÞRWCrrða;0Þ
q (14)

The spectral wavelet cross-correlation coefficient [20] has been
defined in order to use the concept of cross-correlation to detect
spectral similarity

SWRcrða; sÞ ¼
SWCcrða; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWcða; bÞ2SWrða; bþ sÞ2
q (15)

To highlight the presence of significant cross-correlation between
the computed and observed series, but also to detect the scales
mainly involved in such cross-correlation the wavelet cross
coherence can be displayed as a function of scale only, by averaging
the wavelet cross coherence over the entire time duration. It should
be noted that, in atmospheric sciences, the results are interpreted
in the time-frequency (or time-period) domain, rather than in the
time-scale domain natural to the wavelet transform. The relation-
ship between the equivalent Fourier frequency fa (or period Ta) and
the wavelet scale can be derived analytically for a particular



Fig. 4. Estimated and observed V component.
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wavelet function. Formulas for several wavelet functions are given
in Ref. [21]. The global wavelet coherence provides a global esti-
mator of the coherence at a given scale:

CWCFðaÞ ¼ 1
N

XN�1

n¼0

CWCFða; bnÞ (16)

This coefficient lies between 0 and 1, a near zero coherence indi-
cates no relationship between the series, coherence close to 1
indicates strong relationship between the series. Moreover, to have
a rapid and efficient identification of the correlation between the
two series, at a given scale, the time lag which gives the maximum
wavelet cross-correlation, or spectral correlation, sm, can be
calculated for each scale. This parameter provides an estimator of
the temporal synchronisation between two series at a given scale.
By plotting the peak wavelet cross-correlation coefficient
WRcr(a,sm), or the peak spectral wavelet cross-correlation coeffi-
cient SWRcr(a,sm), and the relative time lag (sm/Ta) on the same
graph, we can check how the model behaves for all the scales: good
synchronizations correspond to small relative time lag values, high
correlations correspond to peak correlation coefficients value 1,
whereas value 0 indicates a lack of correlation. At a given scale,
good synchronisation and high correlation indicate good model
performance.
5. Results and discussion

5.1. Global statistics

The results are shown on Figs. 3 and 4. The observed and
estimated wind speed series appear to display a quite satisfac-
tory match. The results in terms of various global statistics are
presented in Table 1. From these statistics, it can be said that the
ANN model predictions are in good agreement with the exper-
imental data: the values of (R) exceed 0.9 (0.95 for the second
model) and the (NMSE) values are inferior to 0.09. These good
results quantify the ‘‘effectiveness’’ of the models in terms of
their ability to accurately predict wind speeds at the target site
using data from neighbouring reference locations. Therefore, this
gives a good indication of the usefulness of the models in
connecting wind data values collected on several locations.
However, by using these classical performance measures, only
the overall performances are considered. To measure the
Fig. 3. Estimated and observed U component.
accuracy of the models at each scale of fluctuations, a comple-
mentary wavelet coherence analysis is needed.

5.2. Wavelet coherence

The mean wavelet cross coherence coefficients are depicted in
Fig. 5(a) and (b), as functions of the equivalent Fourier period, for
the U and V component models respectively. For the U component,
the mean wavelet coherence increases with scale, reaches a step
value close to 0.5, and significantly increases for periods superior to
2.104 s, which correspond to low velocity fluctuations. Strong mean
wavelet coherence, close to 0.8, is found at larger scales, while low
level of coherence is observed at periods smaller than 104 s. For the
V component, the mean coherence significantly increases for
periods longer than 104 s and exceeds 0.8 for periods longer than
105 s. It should be pointed out that these coefficients only provide
a global estimator of the wavelet coherence. However they indicate
that the model performances increase with scales and that the
trained models provide satisfactory results only at larger scales.

5.3. Wavelet cross-correlation

A wavelet cross-correlation analysis is also performed. The peak
wavelet cross-correlation coefficients and the relative time lag are
depicted in Fig. 6(a) and (b), as functions of the equivalent Fourier
period, for the U and V component models respectively. These results
confirm the wavelet coherence results. For both components, the
peak wavelet cross-correlation coefficients increase with increasing
scale, are greater than 0.8 for periods longer than 2.104 s and exceed
0.9 for the periods longer than 5.104 s, while the relative time lags are
close to zero. The results provide a quantitative measure of the
inefficiency of the models for the generation of high-frequency
fluctuations and of their accuracy to generate the low-frequency
fluctuations. But, since the coefficient continually increases with
increasing scales, it seems difficult to define the ‘‘reasonable level’’ to
which the correlation becomes ‘‘significant’’. Thus it is not possible to
clearly define the range of validity of the models.

5.4. Spectral wavelet cross-correlation

To complete this wavelet cross-correlation study, the peak
spectral wavelet cross-correlation coefficients, and relative time
lag, are depicted in Fig. 7(a) and (b), as functions of the equivalent
Fourier period, for the U and V component models respectively. For



Fig. 5. Mean wavelet cross coherence coefficients between the estimated and observed wind speed components.
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both components, for periods shorter than 104 s, the peak spectral
wavelet cross-correlation coefficients are low and/or the relative
time high. Then, the peak correlation coefficients significantly
increase as the scale increases, and reach unit value in the period
range longer than 2.104 s, while relative time lag are close to zero. It
should be noted that the correlation values observed for periods
shorter than 2.103 s, for the V component, are not representative
since the relative time lag is close to 1. An examination of these
graphs shows that the peak spectral wavelet cross-correlation
coefficients reach step value close to 1 for high spectral correla-
tions. As a result, by using these coefficients, it is possible to derive
the range of validity of the models. Thus, one may conclude that the
tested models, based on artificial neural networks, to define the
time-varying wind speed, can be applied only to obtain large-scale
components of the time series with low-frequency fluctuations and
typical time periods longer than 2.104 s. This is a logical result since
long-term regional wind data do not contain enough information
for accurate computation of short-term local phenomena.
6. Combining ANN and statistical models

Time-varying wind speed can be expressed by a superposition of
a rapidly varying component of small amplitude superimposed on
Fig. 6. Peak wavelet cross-correlation coefficients ( ), and relative time lag (
a much more slowly varying one, see Fig. 1. The results presented in
the previous section have shown that the ANN based models can be
used to generate the slowly varying component of large amplitude.
To generate high-frequency fluctuations, that occur in the form of
wind gusts, over a typical time interval [t,(tþ T)], with T less than
2.104 s, it is necessary to use another synthetic data generation
technique. Over such an interval, in a classical approximation, we
assumed that the mean flow, close to surface, is directed parallel to
the ground, therefore the wind velocity field is represented by the
sum of a constant horizontal mean component, with constant
direction, and a turbulent component considered as zero-mean
stationary random process, with normal distribution

u!ðM; tÞ ¼ UhðMÞ i
!
þ u0ðM; tÞ i

!
þ v0ðM; tÞ j

!
þw0ðM; tÞ k

!
(17)

UhðMÞ is the mean horizontal wind velocity over the time
interval [t,(tþ T)], u0(M,t), v0(M,t) and w0(M,t) are the longitudinal,
lateral, and vertical turbulence components, i

!
is the unit vector in

the mean wind direction directed parallel to the ground, k
!

is
vertical and directed upwards. Since the wind series given by the
ANN appear to be locally stationary (their statistical properties are
slowly varying over time), they can be used in order to estimate the
mean wind speed velocity and direction over the designated time
interval: the wind components given by the ANN are converted to
), between the estimated and observed wind speed components.



Fig. 7. Peak spectral wavelet cross-correlation coefficients ( ), and relative time lag ( ), between the estimated and observed wind speed components.

Fig. 8. Wind speed and direction derived from the ANN and velocity fluctuations over 3 characteristic intervals.
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speed and direction. The direction from which the wind is blowing
is given by

FðM; tÞ ¼ 180
p

tan�1
�

UðM; tÞ
VðM; tÞ

�
(18)

It increases clockwise from north, when viewed from above, and
is expressed in degrees (N: 0�, E: 90�, S: 180�, W: 270�). The hori-
zontal wind speed is

jUhðM; tÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2ðM; tÞ þ V2ðM; tÞ

q
(19)

The slowly varying wind speed and direction are plotted in
Fig. 8(a) and (b) respectively. The mean wind speed UhðMÞ and
mean wind direction (the i

!
vector direction) are obtained by

averaging these quantities over the time interval T. Then, by
using a suitable model to describe the statistical properties of
turbulence, fluctuating components can be obtained by auto
regressive moving average (ARMA) models or by wave super-
position method. A full review of these techniques has been
made in Ref. [4]. The conclusion is that the latter method
‘‘appears to give the best results in terms of overall quality of
the generated signal’’. Following this assumption the generation
could be carried out using inverse FFT techniques. The basic
generation parameters are the statistical characteristics of the
fluctuating wind speed components, such as their power spec-
tral density function (PSDF), denoted as S3ðnÞð3 ¼ u0; v0;w0Þ,
which describes the wind energy distribution over frequency n,
their variance s3

2, which quantifies the turbulence intensity I3,
and their integral length scale in the mean wind direction, L3,
which defines the position of the turbulence spectra content. In
practice, these parameters vary with height (z is the height of
the point M above the ground), with the roughness length z0,
and with the mean wind velocity. Their choice can be made
through the use of empirical, semi empirical and theoretical
statistical equations. A lot of data exist both in literature and in
the building codes. In this study, the unified model, proposed in
Ref. [7] and used for Eurocode 1 [22], has been chosen.

nS3ðz;nÞ
s2

3 ðzÞ
¼ d3nL3ðzÞ=UhðzÞ
ð1þ 1:5d3nL3ðzÞ=UhðzÞÞ

5=3

with du0 ¼ 6:868 and dv0 ¼ dw0 ¼ 9:434: (20)

s3ðzÞ ¼ I3UðzÞ with Iv0 ¼ 0:75Iu0 and Iw0 ¼ 0:5Iu0 (21)
L3ðzÞ ¼ 300l3

� z
200

�0:67þ0:05lnðz0Þ

with lu0 ¼ 1: lv0 ¼ 0:25lu0 and lw0 ¼ 0:1lu0 : (22)

Measurements on the site of Evry give a roughness length
z0¼ 0.75 m and a longitudinal turbulence intensity Iu0 ¼ 0.3, typical
of suburban terrain. It should be noted that, since the wind speed
variance and PSDF depend strongly on the mean wind speed, the
statistical properties of turbulence will change in accordance with
the changing ‘‘mean’’ wind speed derived from the ANN. For
example, velocity fluctuations given by the inverse Fourier trans-
form method are plotted in Fig. 8(c), (d), and (e) over three time
Table 2
Performance of the ANN based models

Model for U Model for V

AAE (m/s) 0.19809 0.1794
RMSE (m/s) 0.24959 0.2368
NMSE 0.089488 0.072926
R 0.92251 0.95487
intervals of 256 s. Their statistical properties are well functions of
the slow varying ‘‘mean’’ wind speed: in particular, standard
deviation significantly increases with increasing mean values.
7. Conclusion

Wavelet coherence, wavelet cross-correlation and spectral
wavelet cross-correlation coefficients can be employed as useful
performance estimators of ANN based models. These coefficients
provide quantitative measures of the cross-correlation relation-
ships, in terms of scale and time lag, between the computed and
experimental verification data sets. If the data are characterised
by fluctuations occurring over a wide range of scales, the spectral
wavelet cross-correlation coefficient, initially defined to calculate
the velocity of a thermal field [20], allows the determination of
the scale below which the model fails to represent the fluctua-
tions. In practice, the peak spectral wavelet cross-correlation
coefficient and the relative time lag must be plotted on the same
graph as functions of the equivalent Fourier period: in the val-
idity range of the model, the peak spectral correlation reaches
unit value, while relative time lag is close to zero. This method
provides a simple yet effective way to obtain a quantitative
measure of the performance of a model at any scale. As a prac-
tical application, wavelet cross-correlation analysis has been used
to evaluate the performance of ANN based models used to esti-
mate the local wind speed, on a selected site, from wind speed
data recorded at neighbouring meteorological stations (Table 2).
In our case, it confirms that only the largest scales of motion (low
speed fluctuations) can be estimated from wind speed data
recorded at nearby sites. The smallest scales (high speed fluctu-
ations) have to be simulated by a superimposed short-term
statistical model. Based on the above method, both the high and
the low-frequency segments of the wind velocities spectra can be
simulated, over a range of several hours, at the target site.
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[3] Öztopal A. Artificial neural network approach to spatial estimation of wind
velocity data. Energy Convers Manage 2006;47:395–406.

[4] Rossi R, Lazzari M, Vitaliani R. Wind field simulation for structural engineering
purposes. Int J Numer Meth Eng 2004;61:738–63.

[5] Welfonder E, Neifer R, Spaimer M. Development and experimental
identification of dynamic models for wind turbines. Control Eng Pract
1997;5(1):63–73.

[6] Chen J, Xu YL. On modelling of typhoon induced non stationary wind speed for
tall buildings. Struct Design Tall Spec Build 2004;13:145–63.

[7] Solari G, Piccardo G. Probabilistic 3-D turbulence modelling for gust buffeting
of structures. Probabilistic Eng Mech 2001;16:73–86.

[8] Kalogirou S, Neocleous C, Paschiardis S, Schizas C. Wind speed prediction
using artificial neural networks. In: Proceedings of the European Symposium
on Intelligent Techniques ESIT’99. Crete (Greece); 1999.
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