

A PRECONDITIONER FOR THE SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD

Jean-Michel CROS

cros@iup.univ-evry.fr

UNIVERSITÉ D'ÉVRY - VAL D'ESSONNE

Centre d'Études de Mécanique d'Île de France Laboratoire de Mécanique et Énergétique Laboratoire mixte Université d'Évry - Commissariat à l'Énergie Atomique

- ☐ THE SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD.
- □ PRECONDITIONER : CONTINUOUS FIELD AT THE CROSS-POINTS.
- □ COMPUTATIONAL RESULTS : STRUCTURAL ANALYSIS PROBLEMS.

THE SCHUR COMPLEMENT DOMAIN DECOMPOSITION METHOD : INGREDIENTS

FE ON Ω + NON-OVERLAPPING DECOMPOSITION

$$\begin{split} u^{(1)} &= u^{(2)} \\ [\sigma^{(1)} \, n^{(1)} + \sigma^{(2)} \, n^{(2)}] &= 0 \end{split}$$

□ CONDENSATION : ELIMINATION OF INTERIOR DOF OF LOCAL SUBDOMAIN MATRICES

□ ITERATIVE SOLUTION OF THE REDUCED PROBLEM ON INTERFACE

□ NUMERICAL AND PARALLEL SCALABILITY

 \square NOTATIONS

$$K^{s} = \begin{bmatrix} K_{ii}^{s} & K_{ib}^{s} \\ K_{ib}^{s^{T}} & K_{bb}^{s} \end{bmatrix}, \quad u^{s} = \begin{cases} u_{i}^{s} \\ u_{b}^{s} \end{cases}, \quad f^{s} = \begin{cases} f_{i}^{s} \\ f_{b}^{s} \end{cases}, \quad \text{AND} \quad u_{b}^{s} = N_{b}^{s^{T}} u_{b}.$$

□ GLOBAL LINEAR SYSTEM

$$\begin{bmatrix} K_{ii}^{1} & \cdots & 0 & K_{ib}^{1} N_{b}^{1^{T}} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & K_{ii}^{n_{s}} & K_{ib}^{n_{s}} N_{b}^{n_{s}^{T}} \\ N_{b}^{1} K_{ib}^{1^{T}} & \cdots & N_{b}^{n_{s}} K_{ib}^{n_{s}^{T}} & \sum_{s=1}^{n_{s}} N_{b}^{s} K_{bb}^{s} N_{b}^{s^{T}} \end{bmatrix} \begin{bmatrix} u_{i}^{1} \\ \vdots \\ u_{i}^{n_{s}} \\ u_{b} \end{bmatrix} = \begin{cases} f_{i}^{1} \\ \vdots \\ f_{i}^{n_{s}} \\ \sum_{s=1}^{n_{s}} N_{b}^{s} f_{b}^{s} \end{cases}.$$

□ INTERFACE PROBLEM

$$\left(\sum_{s=1}^{n_s} N_b^s \left(K_{bb}^s - K_{ib}^{s^T} K_{ii}^{s^{-1}} K_{ib}^s\right) N_b^{s^T}\right) u_b = \sum_{s=1}^{n_s} N_b^s \left(f_b^s - K_{ib}^{s^T} K_{ii}^{s^{-1}} f_i^s\right).$$

DD14, 4

□ WITHOUT COARSE GRID

$$M = \sum_{s=1}^{n_s} N_b^s D^s S^{s^{-1}} D^s N_b^{s^T},$$

WITH
$$\sum_{s=1}^{n_s} N_b^s D^s N_b^{s^T} = I_{\Gamma}.$$

□ WITH COARSE GRID

 $Z^{s}, \quad \text{RIGID BODY MODES OR CORNER MODES}$ $G = [N_{b}^{1}D^{1}Z^{1}, ..., N_{b}^{n_{s}}D^{n_{s}}Z^{n_{s}}]$ $M = \left(I - G \left[G^{T} S G\right]^{-1} G^{T}S\right) \sum_{s=1}^{n_{s}} N_{b}^{s} D^{s} \tilde{S}^{s^{-1}} D^{s} N_{b}^{s^{T}}.$

EFFICIENCY, BUT CONSTRUCTION OF THE COARSE PROBLEM IS COSTLY

CORNERS OR CROSS-POINTS :

- ✤ CROSS-POINTS, POINTS BELONGING TO MORE THAN TWO SUBDOMAINS
- ✤ POINTS LOCATED AT THE BEGINNING AND END OF EACH EDGE OF EACH SUDOMAIN

PRECONDITIONED CONJUGATE GRADIENT - MECHANICAL INTERPRETATION

GRADIENT = FORCE PRECONDITIONED GRADIENT = DISPLACEMENT ↓ IMPOSE CONTINUOUS DISPLACEMENT AT THE CROSS-POINTS

$$\left\{ u \right\} = \left\{ \begin{array}{c} u_r \\ u_c \end{array} \right\} = \left\{ \begin{array}{c} u_r^1 \\ \vdots \\ u_r^{n_s} \\ u_c \end{array} \right\}, \quad u_c^s = N_c^{s^T} u_c.$$

$$\left[\begin{array}{c} K_{rr}^1 & \cdots & 0 & K_{rc}^1 N_c^{1^T} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & K_{rr}^{n_s} & K_{rc}^{n_s} N_c^{n_s^T} \\ N_c^1 K_{rc}^{1^T} & \cdots & N_c^{n_s} K_{rc}^{n_s^T} \end{array} \right] \left\{ \begin{array}{c} u_r^1 \\ \vdots \\ u_r^n \\ u_c \end{array} \right\} = \left\{ \begin{array}{c} f_r^1 \\ \vdots \\ f_r^{n_s} \\ N_c^1 K_r^n \\ \sum_{s=1}^{n_s} N_c^s K_{rc}^{n_s^T} \end{array} \right\}.$$

$$u_{c} = \left(\sum_{s=1}^{n_{s}} N_{c}^{s} \left(K_{cc}^{s} - K_{rc}^{s^{T}} K_{rr}^{s^{-1}} K_{rc}^{s}\right) N_{c}^{s^{T}}\right)^{-1} \sum_{s=1}^{n_{s}} N_{c}^{s} \left(f_{c}^{s} - K_{rc}^{s^{T}} K_{rr}^{s^{-1}} f_{r}^{s}\right),$$
$$u_{r}^{s} = K_{rr}^{s^{-1}} \left(f_{r}^{s} - K_{rc}^{s} N_{c}^{s^{T}} u_{c}\right).$$

Université d'Évry / CEMIF - LME

DD14, 7

CONNECTION WITH THE INTERFACE

$$u_r^s = R_r^s \ u_b^s, \quad u_c^s = R_c^s \ u_b^s.$$

$$\begin{split} M &= \sum_{s=1}^{n_s} N_b^s D^s \left[R_r^{s^T} K_{rr}^{s^{-1}} R_r^s \right] D^s N_b^{s^T} + \\ &+ \sum_{s=1}^{n_s} N_b^s D^s \left[\left(N_c^s (R_c^s - K_{rc}^{s^T} K_{rr}^{s^{-1}} R_r^s) \right)^T S_c^{-1} \sum_{s=1}^{n_s} \left(N_c^s (R_c^s - K_{rc}^{s^T} K_{rr}^{s^{-1}} R_r^s) \right) \right] D^s N_b^{s^T} \end{split}$$

ADD ARTIFICIAL CROSS-POINTS TO GET NON-LINEAR (NON-PLANAR IN 3D) CROSS-POINTS !!!

NEW COARSE PROBLEM

$$S_{c} = \sum_{s=1}^{n_{s}} N_{c}^{s} \left[K_{cc}^{s} - K_{rc}^{s^{T}} K_{rr}^{s^{-1}} K_{rc}^{s} \right] N_{c}^{s^{T}} = \sum_{s=1}^{n_{s}} N_{c}^{s} S_{c}^{s} N_{c}^{s^{T}}$$

COMPUTATIONAL ASPECTS

5 CROSS-POINTS BUT 12 CORNER MODES!!!

□ NEUMANN-NEUMANN PRECONDITIONER + CONTINUITY (COARSE PROBLEM = 5)

▷ IN EACH SUBDOMAIN : REDUCED PROBLEM ON THE CROSS-POINTS

 S_c^s (SCHUR COMPLEMENT MATRIX)

 $\Rightarrow \text{ ASSEMBLING OF } S_c = \sum_{s=1}^{n_s} N_c^s S_c^s N_c^s^T \text{ and factorisation of the coarse problem}$

GENERALIZED NEUMANN-NEUMANN PRECONDITIONER (COARSE PROBLEM = 12)

ightarrow IN EACH SUBDOMAIN : COMPUTATION OF THE CORNER MODES Z^s

 \Rightarrow COMPUTATION OF SG

 \Rightarrow Assembling of G^TSG and factorisation of the coarse problem

PARALLEL IMPLEMENTATION

- DECOMPOSITION INTO SUBDOMAINS BY METIS 4.0.1 (FER/SUBDOMAIN)
- □ CODE WRITTEN IN C++ AND FORTRAN 77
- COMMUNICATIONS : MPI
- □ ONE SUBDOMAIN BY NODE
- □ FINITE ELEMENT (MODULEF,...)
- □ SKYLINE SOLVERS IN THE SUBDOMAINS
- □ COARSE PROBLEM IS ASSEMBLED AND SOLVED BY DIRECT SOLVER
- □ OPTIMISATION : BLAS, LAPACK,...
- \square STOPPING CRITERION : $\parallel Ku f \parallel / \parallel f \parallel \le 10^{-6}$
- □ SGI ORIGIN 2000 (64 PROCS.),
 - PÔLE PARALLÉLISME ÎLE DE FRANCE SUD, ENS CACHAN

FER/SUBDOMAIN : A PRE AND POST-PROCESSOR WITH A FRIENDLY GUI

OBJECT-ORIENTED PROGRAM WRITTEN IN C++ AND OPEN-GL (WINDOWS, IRIX)

- O MESH PARTITIONING (METIS,...)
- O RENUMBERING

- O CROSS-POINTS DETECTION
- **O** DESCRIPTION OF THE INTERFACE

3-NODE ELEMENTS (101 \times 101 NODES, 20 402 DOF)

14 SUBDOMAINS (INTERFACE = 1 202 DOF) 28 SUBDOMAINS (INTERFACE = 1 878 DOF)

Université d'Évry / CEMIF - LME

DD14, 12

3-NODE ELEMENTS (101 \times 101 NODES, 20 402 DOF)

14 SUBDOMAINS (INTERFACE = 1 202 DOF) 28 SUBDOMAINS (INTERFACE = 1 878 DOF)

2D ELASTICITY

	PRIMAI			DUAL			
	FINIVIAL		FETI-DP		FETI-1		
n_s	GNN (RBM)	GNN (CM)	NN+C	DIRICHLET	LUMPED	DIRICHLET	LUMPED
14	24 iter.	14 iter.	20 iter.	22 iter.	60 iter.	24 iter.	49 iter.
28	26 iter.	14 iter.	23 iter.	24 iter.	66 iter.	26 iter.	52 iter.

SIZE OF THE COARSE PROBLEM

	PRIMAL			DUAL			
			FETI-DP		FETI-1		
n_s	GNN (RBM)	GNN (CM)	NN+C	DIRICHLET	LUMPED	DIRICHLET	LUMPED
14	30	132	52		30		
28	72	286	108		72		

GNN : GENERALIZED NEUMANN-NEUMANN PRECONDITIONER

(RBM : RIGID BODY MODES, CM : CORNER MODES)

NN+C : NEUMANN-NEUMANN PRECONDITIONER + CONTINUITY AT THE CROSS-POINTS

LINEAR ANALYSIS : DEFLECTION OF A CYLINDRICAL SHELL ROOF

GRAVITY LOAD

3-NODE SHELL ELEMENTS

MESH	MESH # ELEMENTS	
h	1 152	3 750
h/2	4 608	14 406
h/4	18 432	56 454

CYLINDRICAL SHELL ROOF : 24 SUBDOMAINS

MESH	INTERFACE (DOF)
h	1 182
h/2	2 382
h/4	4 818

THICKNESS = 0,1 m

	PRI	DUAL	
MESH	GNN	NN+C	FETI-DP
h	30 iter. (726)	42 iter. (270)	44 iter. (270)
h/2	36 iter. (714)	41 iter. (270)	44 iter. (270)
h/4	39 iter. (738)	40 iter. (276)	45 iter. (276)

STOPPING CRITERION

$$\frac{\parallel K \, u - f \parallel}{\parallel f \parallel} \leq 10^{-6}$$

GNN : GENERALIZED NEUMANN-NEUMANN PRECONDITIONER NN+C : NEUMANN-NEUMANN PRECONDITIONER + CONTINUITY AT THE CROSS-POINTS

		PRIMAL		DUAL
MESH	THICKNESS	GNN	NN+C	FETI-DP
h	0,1	30 iter. (726)	42 iter. (270)	44 iter. (270)
	0,01	31 iter.	48 iter.	50 iter.
	0,001	54 iter.	99 iter.	106 iter.
h/2	0,1	36 iter. (714)	41 iter. (270)	44 iter. (270)
	0,01	37 iter.	48 iter.	50 iter.
	0,001	45 iter.	74 iter.	80 iter.
h/4	0,1	39 iter. (738)	40 iter. (276)	45 iter. (276)
	0,01	39 iter.	44 iter.	47 iter.
	0,001	42 iter.	67 iter.	73 iter.

h/4 (56 454 DOF) - THICKNESS = 0,1 m

n_s	INTERFACE (DOF)	
12	3 144	
24	4 818	RUGGED INTERFACE !!!
48	7 295	

MESH h/4 (56 454 DOF) - THICKNESS = 0,1 m

		PRIM	DUAL		
n_s - (INTERFACE)		GNN	NN+C	FETI-DP	
12 (3 144) 38		38 iter. (426)	40 iter. (216)	45 iter. (216)	
24 (4 818)		39 iter. (738)	40 iter. (276)	45 iter. (276)	
48	(7 295)	45 iter. (1602)	51 iter. (630)	56 iter. (630)	

$$\begin{cases} \text{FIND } (\lambda, q) \\ K^{-1}M \ q = \frac{1}{\lambda} \ q \end{cases}$$

SUBSPACE ALGORITHM
 $KZ_{k+1} = MZ_k$
 \bigcup
SUCCESSIVE AND MULTIPLE RIGHT HAND

RESTARTED CONJUGATE GRADIENT (KRYLOV SUBSPACE)

 \parallel

SIDES

$$u_b^0 = \sum_{i=1}^{n_1 + \dots + n_{p-1}} \frac{(f_{b_p}, w_i)}{(Sw_i, w_i)} w_i$$

2 LOWEST EIGENVALUES - SUBSPACE ALGORITHM (5 ITERATIONS)

COARSE PROBLEM				
GNN 582				
NN+C, FETI-DP	222			

ACCUMULATION OF SEARCH DIRECTIONS

IMPLICIT NEWMARK ALGORITHM

$$\left\{ \begin{array}{l} \left[K+\frac{1}{\beta\,h^2}\;M\right]u^k=f^k\\ \text{OR}\\ \left[M+\beta\,h^2\;K\right]\ddot{u}^k=f^k \end{array} \right. \label{eq:constraint}$$

NO RIGID BODY MODES (SHIFT)

➤ FETI 1 OR GNN (RBM) : REINTRODUCTION OF THE RIGID BODY MODES (COSTLY)

➤ FETI-DP OR NN+C OR GNN (CM) : NOTHING TO DO

IMPLICIT LINEAR DYNAMIC ANALYSIS : PLATE (1 \times 1 \times 0,1 m)

IMPLICIT NEWMARK ALGORITHM

3D LINEAR ANALYSIS : CANTILEVER BEAM $(4 \times 4 \times 40 \text{ m})$

8-NODE BRICK ELEMENTS (12 \times 12 \times 76 NODES, 32 832 DOF)

20 SUBDOMAINS (INTERFACE = 7 614 DOF) 40 SUBDOMAINS (INTERFACE = 10 262 DOF)

Université d'Évry / CEMIF - LME

DD14, 25

3D LINEAR ANALYSIS : CANTILEVER BEAM

	PRIMAL -		DUAL				
			FETI-DP		FETI-1		
n_s	GNN (RBM)	NN+C	DIRICHLET	LUMPED	DIRICHLET	LUMPED	
20	44 iter.	30 iter.	31 iter.	60 iter.	43 iter.	67 iter.	
40	54 iter.	30 iter.	30 iter.	53 iter.	58 iter.	77 iter.	

SIZE OF THE COARSE PROBLEM

	PRIMAL		DUAL			
			FETI-DP		FETI-1	
n_s	GNN (RBM)	NN+C	DIRICHLET	LUMPED	DIRICHLET	LUMPED
20	102	852			102	2
40	216	1968			216	6

DECREASE THE SIZE OF THE COARSE PROBLEM :

ENOUGH CROSS-POINTS TO REMOVE ALL SINGULARITIES

□ METHOD NUMERICALLY SCALABLE.

□ PERFORMANCES ARE EQUIVALENT TO THOSE OF THE DUAL-PRIMAL FETI METHOD.

□ IMPLEMENTATION EASY.

FUTURE WORKS

□ PARALLEL SCALABILITY.

- □ VARIATION OF THE NUMBER OF DOF FIXED BY CROSS-POINTS.
- □ COMPARISON WITH OTHER PRECONDITIONERS.

□ METHOD NUMERICALLY SCALABLE.

□ PERFORMANCES ARE EQUIVALENT TO THOSE OF THE DUAL-PRIMAL FETI METHOD.

□ IMPLEMENTATION EASY.

FUTURE WORKS

□ PARALLEL SCALABILITY.

□ VARIATION OF THE NUMBER OF DOF FIXED BY CROSS-POINTS.

□ COMPARISON WITH OTHER PRECONDITIONERS.