

PGI® Release Notes
PGPROF & PGDBG
Release 5.2

The Portland Group™ Compiler Technology
STMicroelectronics, Inc
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070
www.pgroup.com

While every precaution has been taken in the preparation of this document,
The Portland Group™ Compiler Technology, STMicroelectronics, Inc.
(PGI®) makes no warranty for the use of its products and assumes no
responsibility for any errors that may appear, or for damages resulting from
the use of the information contained herein. STMicroelectronics, Inc.
retains the right to make changes to this information at any time, without
notice. The software described in this document is distributed under license
from STMicroelectronics, Inc. and may be used or copied only in
accordance with the terms of the license agreement. No part of this
document may be reproduced or transmitted in any form or by any means,
for any purpose other than the purchaser's personal use without the express
written permission of STMicroelectronics, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this manual, STMicroelectronics was aware of a trademark claim. The
designations have been printed in caps or initial caps.

PGF90 is a trademark and PGI, PGHPF, PGF77, PGCC, PGPROF, and
PGDBG are registered trademarks of The Portland Group Compiler
Technology, STMicroelectronics, Inc. *Other brands and names are the
property of their respective owners.

PGI PGPROF & PGDBG 5.2 Release Notes
Copyright © 2004

The Portland Group™ Compiler Technology
STMicroelectronics, Inc. - All rights reserved.

 Printed in the United States of America

First Printing: Release 5.2, September 2004

Technical support: trs@pgroup.com
 http://www.pgroup.com

 Table of Contents

TABLE OF CONTENTS... 7

1 PGI PGPROF/PGDBG 5.2 RELEASE NOTES............................ 1
1.1 PGDBG AND PGPROF... 1
1.2 PGDBG AND PGPROF NEW FEATURES....................................... 2
1.3 PGDBG THREAD LIBRARY LIMITATIONS 4
1.4 PGBDG COMMAND LIMITATIONS .. 6
1.5 PGPROF FEATURES ... 9
1.6 TOOLS PROBLEMS CORRECTED IN 5.2 .. 9

PGI Workstation 5.2 1

1 PGI PGPROF/PGDBG 5.2
 Release Notes
1.1 PGDBG and PGPROF

PGI PGPROF & PGDBG 5.2 includes several new features in the PGDBG
parallel debugger and PGPROF performance profiling tools. In particular,
both of these tools include completely new graphical user interfaces
(GUIs).

PGDBG is supported as a graphical and command line debugger in both
the linux86 and linux86-64 execution and development environments. Like
the compilers, PGDBG for linux86-64 must run in a linux86-64 execution
environment. PGDBG for linux86 environments is a separate version, and
it will also run in the linux86-64 execution environment, but only with
linux86 executables. The linux86-64 version of PGDBG will only debug
executables built to run as linux86-64 executables. PGDBG for linux86-64
has been enhanced to disassemble the new AMD64 technology instructions
and associated registers, and is more compatible with gcc, g77, and g++
debug information.

PGPROF is supported as a graphical and command line profiler in both the
linux86 and linux86-6 environments. The same version works in either the
linux86 or linux86-64 environment to process a trace file of profile data
created by executing the instrumented program. Program instrumentation
is either line-level (–Mprof=lines), function-level (–Mprof=func), or gprof-
style (–pg) sample based and trace profiling.

The new PGDBG and PGPROF graphical user interfaces (GUIs) are

 Release Notes 2

invoked by default. To use the command-line interfaces, invoke either tool
with the –text option. To use the old GUI interfaces (included in PGI
Workstation 5.1 and prior releases), invoke either tool with the –motif
option.

1.2 PGDBG and PGPROF New Features

Following are the new features included in the PGI PGPROF & PGDBG
5.2 versions of PGDBG and PGPROF:

• Fortran 95 support – PGDBG and PGPROF both support the
language, syntax, and context of Fortran 95.

• New Graphical User Interfaces (GUIs) – all‐new graphical user

interfaces provide easier, more intuitive and effective ways
to access the debugger and functionality. The PGDBG
graphical interface supports single‐threaded, multi‐
threaded, and distributed applications. The PGPROF
graphical user interface supports either PGI‐style pgprof.out
trace files or gprof‐style gmon.out trace files, including
source correlation for gprof‐style traces.

• Process attach – PGDBG now supports the attach and detach

commands to attach and detach the debugger to or from
running processes. This functionality works for MPI
applications, allowing attach to all processes in the MPI
application with a single attach command.

• AMD64 call command – PGDBG now supports the call

command for linux86‐64 environments, with some minor
limitations (see below) in passing F90 deferred shape array
arguments.

• Large Arrays – PGDBG now supports linux86‐64 applications

built with –mcmodel=medium –Mlarge_arrays.

PGI Workstation 5.2 3

• Dynamic threads support – In previous releases, PGDBG was

unable to debug multi‐threaded parallel programs built on
some Linux distributions unless the programs were
statically linked. PGDBG can now debug such programs
even if they are dynamically linked.

• Command Mode ‐ the default command mode has been

changed to PGI mode from DBX mode. DBX commands
are no longer available by default. Command modes can be
switched by using the pgienv command.

• OpenMP Changes ‐ the pgdbg 5.2 OpenMP event handler is

disabled by default. The pgdbg OpenMP event handler sets
breakpoints at the beginning and end of each parallel
region, and at each thread synchronization point. This leads
to a noticeable slowdown in the performance of the
program when it runs under the control of the debugger.
The new behavior is far less intrusive.

o Parallel Regions: when the target program stops in a
parallel region, pgdbg allows threads to stop
asynchronously and a prompt is available
immediately after a control command is issued.
Line level debugging is maintained, but some
threads may be running (e.g. spinning at a barrier
point) while others are stopped.

o Serial Regions: when the target program stops in a
serial region, pgdbg instructs threads to stop
synchronously and a prompt is available after all
threads have stopped. In this way all worker (non‐
initial) threads are halted each time the initial
thread is halted.

The pgienv command can be used to define when pgdbg
accepts new commands (relative to the execution state of

 Release Notes 4

running processes), and which threads/processes are halted
when a subset of threads/processes trigger an event.

• I/O Redirection: you no longer need a space between I/O

redirection specifiers and filenames; e.g. run >out.dat now
works as well as run > out.dat.

• Typecast Evaluation: the pgdbg expression evaluator now
evaluates C/C++ typecasting correctly.

• NPTL Threads ‐ pgdbg 5.2 supports debugging NPTL
thread‐parallel programs. NPTL is a new implementation of
the pthreads library for GNU/Linux, which is the default on
some newer Linux distributions. (There are some minor
issues with NPTL and debugger support (see below).)..

PGPROF is a graphical display tool of profile information created through
execution of programs compiled and linked using –Mprof. Only a linux86
executable version of PGPROF is provided, but it is able to read either
types of profile output, and resides in both linux86 and linux86-64 bin
areas.

See the PGI Tools Guide for a complete description of the usage and
capabilities of pgdbg and PGPROF.

1.3 PGDBG Thread Library Limitations

PGDBG 5.2 includes support for the new NPTL threads library supported
as the default pthreads library in most recent versions of Linux: RH 9.0,
SuSE 9.1, RHEL3.0, and Fedora Core 2.

As with everything new, there are problems that are being worked out or
around. Here are ones specific to running pgdbg with programs that use
threads. There are a few issues found in using pgdbg 5.2 with this new
technology:

PGI Workstation 5.2 5

Pgdbg Thread Support Limitations and Workarounds

Area Behavior Workaround

NPTL

"No more processes": when a multi-
threaded process that uses NPTL
and spawns a lot of threads is run
under control of a debugger, the
process may fail with an "out of
processes" error. This is due to an
NPTL issue whereby, in some cases
NPTL threads are not cleaned up
properly, leaving "zombie" processes
(processes which are no longer
running, but whose resources have
not been released).

Force link with the old Linuxt pthread
library by setting the
LD_ASSUME_KERNEL environment
variable as follows (example assumes
csh):
• on SuSE 9.1
setenv LD_ASSUME_KERNEL
2.4.21
• on RH EL 3.0:

on RH 9.0:
setenv LD_ASSUME_KERNEL 2.4.1
setenv LD_ASSUME_KERNEL
2.4.19

Example: Append the name of the
program to use old Linux pthread
library only with that program.

setenv LD_ASSUME_KERNEL \
 2.4.19 ./realplay

NPTL
Thread
Exit

PGDBG may not recognize exit of
initial thread:
• Linux86-64: SuSE 9.1, RHEL

3.0, Fedora Core 2
• Linux86: RH 9.0, RHEL 3.0,

Fedora Core 2

When the debugger traces a thread
intensive NPTL program, the initial
thread does not report its exit to the
debugger. As noted in the previous
item, the operating system does not
always clean up NPTL threads
properly, resulting in "zombie"
processes.

To avoid this problem, exit the
debugger before program exit, or set
LD_ASSUME_KERNEL as above to
avoid the use of the NPTL thread
library.

Threads
Library

on some Linux systems, a Linux
installation bug results in installing a
pthreads library that has been
stripped; that is, the strip command
has been used to remove symbol
information from the library.

• This has been observed on Red
Hat 7.1 and Red Hat 8.0. Red
Hat is aware of the problem; the
bugzilla number is 110038.

• To check if your system has this

problem, execute the command:

 Release Notes 6

On such systems, pgdbg cannot
debug multi-threaded programs.

file /lib/libpthread*

and check to see if the output says
that the library has been stripped.

reading
F90/F95
derived
types

• pgdbg 5.2 does not support
using the % character to access
a member of a derived type.

• if you select a member of a
derived type variable and
attempt to print it via the right-
click pop-up menu, pgdbg will
return an error.

• Use the period character (.)
instead, e.g. use x.y instead of
x%y.

• type the print command in the
command pane, using the (.)
character to specify a member of a
derived type variable.

GUI
Command
pane
source

From the GUI command pane, the
source command does not wait for
execution to stop, but continues
reading commands, even if the target
is running. For instance, if the
source script contains commands to
set a breakpoint, run, and print a
stacktrace, the expectation might be
that the stacktrace would print at the
breakpoint. In fact, it might return
an error, since the target could be
running when stacktrace was
executed.

Insert a wait command after each
control command in the script.

GUI
refresh

pgdbg 5.2 GUI may fail to refresh
the display if it is running remotely
across a slow or congested network.

Hit <CTRL>-L in the main window or
select the Refresh item under the GUI's
Options menu to manually refresh the
display.

GUI
panel
disassem.

When main function or routine of the
target program is not compiled with -
g, the GUI does not automatically
display disassembly in the source
pane.

Select
Window->Disassembly
and enter the name of the main
routine...

1.4 PGBDG Command Limitations

Pgdbg Known Limitations and Workarounds

PGI Workstation 5.2 7

cmd Behavior Workaround

watch
watchi
track
tracki
hwatch
hwatchr
hwatchb

The "watch" family of commands is
unreliable when used with local
variables in pgdbg 5.2.

Note that calling a function or
subroutine from within the scope of
the watched local variable may cause
missed events and/or false positive
events.

Local variables may be watched
reliably as long as program scope
does not leave the scope of the
watched variable.

Using the "watch" commands with
global or static variables is reliable.

stacktrace

Stacktrace can be very slow. The
method used by pgdbg to retrieve
function or subroutine arguments in
the stacktrace command is currently
non-optimal.

For a fast traceback without argument
information, use the undocumented
calltrace command. Note that
calltrace may not be available in
future releases.

stacktrace

Stacktrace may skip a frame in the
stack if it encounters a routine
compiled without -g. This may be
most noticeable when an exception is
encountered in a library routine such
as memset, and the stacktrace does
not show the calling routine. The
current routine may not be identified
by name, showing only unknown-
addr.

 No workaround.

step

step into a function in a shared library
compiled –g fails; the command
steps over the function..

set a breakpoint on the function
name, then use the cont command to
run to the breakpoint in the shared
library..

call

The call command does not support
the following Fortran90/95 features:

• Functions returning arrays,
• Functions returning

pointers,
• Assumed shape array

arguments,
• Pointer arguments.

Be careful

print

OpenMP PRIVATE Variables: print
or other means of accessing OpenMP
PRIVATE variables may give
incorrect results. Accessing
PRIVATE variables only works in
limited circumstances.

See the FAQ at
http://www.pgroup.com for
accessing limitations in OpenMp.

 Release Notes 8

Target
Platform

On an AMD64 system, you can debug
either a linux86-64 application or a
linux86 application using pgdbg 5.2.
However, by default pgdbg5.2 will
assume you are debugging a linux86-
64 application

Debugging a linux86 application will
not work unless you use the
-tp k8-32
pgdbg command line option.

run
or
rerun

run or rerun with no arguments, after
a previous run or rerun that specified
I/O redirection, continues to use the
I/O redirection set up in the previous
command. Thus
• run > out.dat creates a new file,

out.dat, containing program
output. A subsequent run
command without arguments
will append the output of that
run to out.dat.

• run < in.dat followed by run
will likely fail, since the second
run will continue using in.dat,
but the file pointer for in.dat
will be set to the location at the
point in the previous run when
the new run was executed.

Care should be taken when
rerunning code.

shell
• shell, used after a runor rerun

that specified I/O redirection,
will continue to use the I/O
redirection set for the previous
run or rerun. Thus
run> out.dat
 followed by
shell ls
will produce a file out.dat
containing the output of the
runcommand followed by the
output of the shell ls command.

• The same holds true when
issuing the shell command in the
command prompt of the pgdbg
GUI. However, if you are not
redirecting I/O, then the output
of the shellcommand is sent to
the GUI's Program I/O window.

Care should be taken when using
the shell command

PGI Workstation 5.2 9

1.5 PGPROF Features

The following table summarizes the new pgprof features in 5.2 PGI
Workstation, as compared to previous releases.

pgprof 5.2 New Features

Feature Description

Java pgprof GUI pgdbg, User Interface implementation

gprof-style sample-based
profiling

pgprof supports gprof-style sample-based
profiling

pgprof
gprof-style traces

pgprof supports gprof-style traces including
routine and line-level correlation

instrumentation profiling
pgprof supports pgprof-style instrumentation
profiling

Pgprof custom GUI pgprof supports a user-customizable graphical
user interface GUI

1.6 Tools Problems Corrected in 5.2

The following problems were corrected in the current release. Most were
reported in PGI Workstation 5.1-6 or previous releases. Problems found in
PGI Workstation 5.1-6 may not have occurred in the previous releases. A
description of the problem is given, but some problems can only be
described in general terms because of complexity or confidentiality. An
Internal Compiler Error (ICE) is usually the result of checks the compiler
components make on internal data structures, discovering inconsistencies
that could lead to faulty code generation. The messages accompanying any
ICE are cryptic and of little use to users.

 Release Notes 10

Tools and compiler problems corrected are shown together.

Tool Technical Problem Reports (TPRs) Corrected in PGI Release 5.2-4
TPR Rel Lang/ tool Description Symptom
2093 5.1 pgdbg pgdbg now supports F90 pointer variables. Pgdbg error msgs

2773 5.1 pgdbg 1. Printing allocatable arrays.
2. Source pane not updated after reload

Display not right

2806 5.1 pgdbg print of F90 array pointer that is a field of
a derived type.

Prints only the
first element

3224 5.1 pgdbg Documentation corrected to say core files
are NOT supported.

Documentation
said core files
supported

PGI Workstation 5.2 11

	Table of Contents
	1 PGI PGPROF/PGDBG 5.2� Release Notes
	PGDBG and PGPROF
	PGDBG and PGPROF New Features
	PGDBG Thread Library Limitations
	PGBDG Command Limitations
	PGPROF Features
	Tools Problems Corrected in 5.2

