PGI Tools Guide

Parallel Tools
for Scientists and Engineers

The Portland Group Compiler Technology
STMicroelectronics

9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070

While every precaution has been taken in the preparation of this document, The Portland Group™
Compiler Technology, STMicroelectronics makes no warranty for the use of its products and
assumes no responsibility for any errors that may appear, or for damages resulting from the use of
the information contained herein. The Portland Group™ Compiler Technology,
STMicroelectronics retains the right to make changes to this information at any time, without
notice. The software described in this document is distributed under license from The Portland
Group™ Compiler Technology, STMicroelectronics and may be used or copied only in
accordance with the terms of the license agreement. No part of this document may be reproduced
or transmitted in any form or by any means, for any purpose other than the purchaser's personal
use without the express written permission of The Portland Group™ Compiler Technology,
STMicroelectronics

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this manual, The Portland Group™
Compiler Technology, STMicroelectronics was aware of a trademark claim. The designations
have been printed in caps or initial caps. Thanks are given to the Parallel Tools Consortium and,
in particular, to the High Performance Debugging Forum for their efforts.

PGF90, PGC++, Cluster Development Kit, CDK and The Portland Group are trademarks and
PGI, PGHPF, PGF77, PGCC, PGPROF, and PGDBG are registered trademarks of
STMicroelectronics, Inc. Other brands and names are the property of their respective owners.
The use of STLport, a C++ Library, is licensed separately and license, distribution and copyright
notice can be found in the Release Notes for a given release of the PGI compilers and tools.

PGI Tools Guide

Copyright © 2004 STMicroelectronics, Inc.
All rights reserved.

Printed in the United States of America

Part Number: 2040-990-888-0603
Printing: Release 5.2, June 2004
Technical support: trs@pgroup.com
Sales: sales@pgroup.com

Web: http://www.pgroup.com

mailto:trs@pgroup.com
mailto:sales@pgroup.com
http://www.pgroup.com/

Table of Contents

LIST OF TABLES
TABLE OF CONTENTS 111
PREFACE 1
INTENDED AUDIENCE........ccettttutttteeeeeeiitreeeeeeeeeeiareeeeeeeeesisseeeeeeeeestasreeeseeeeesisssseseeeeesisrsseeeeeeaninrees 1
COMPATIBILITY AND CONFORMANCE TO STANDARDScvvvtiiiiieiiirrreeeeeeeiiiireeeeeeeeeeiinnreeeeeeeeesinnnes 2
ORGANIZATIONuuveiieeeeeeiiitttteeeeeeeeeeiareeeeeeeeeeiareteeeeeeesttsseeeeeeeeasetraseeeeeeeasssssseseseeeasaissseseeeeeeanisrres 3
CONVENTIONS ...uttttiiieeeeeeeitteeeeeeeeeeeetaeeeeeeeeeeeaareeeeeeeeeetasaaeeeeeeasestsaseeeeeeeasasssseseseesaaansseseeeeeennnrees 4
RELATED PUBLICATIONSouttviiiiieeieeiiieeeee e e eeecate e e e e eeeetaaeeeeeeeeeeaareeeeeeeeesansseeeseeeeesnsseseeeeeennnnees 4
SYSTEM REQUIREMENTScceiitiiittttteeeeeeeiitrreeeeeeeeeeiasreseseeeeesisseseeeseeesisssseseeeeesessssseeeeeesessssseseees 6
THE PGDBG DEBUGGER 7
1.1 DEFINITION OF TERMScociiiiiiiiiitieeeeeeeiitteeeeeeeeeeitreeeeeeeeesetasseeeeeeesetssseseseeeensssseeeeeesennsnsreeeens 7
1.1.1 Compiler Options for DebUGZINGcccvervieiiieiieieeieieeee et eeens 8
1.2 INVOCATION AND INITIALIZATIONcooiiuurireeeeeeeiiitrereeeeeeesetteeeeeeeeeseesrareeeeeeeensaseeeeeeeeeesnnreeeess 8
1.3 COMMAND-LINE ARGUMENTSevtieieeiiiireeeeeeeeeiiitrereeeeeeeseitssreseeeeesestssseseeeessssssssessessessissseseens 9
1.4 COMMAND LANGUAGEcooiiiiiiiiteeeee e eeeetaeee e e e eeeeae e e e e e eeeeataaaeeeeeeeeetasreeeeeeeeennnaeeeeeeeeennnnes 10
| 0 1] 721 1< 10
7411 o T) (SR 10
L.4.3 SCOPE RULES.......eieeieieeeieeieeeee ettt te b e s neesneesneeseenneenes 11
1.4.4 Re@iSter SYMDOIS ...c..eoiiiiiiiecieciieeee ettt e e sneesneeseenseens 12
1.4.5 SoUrCE COAE LOCALIONS ...cooiiieeiiiiieeeieeeeeieeee et eee e e e et e e e e s e s eeaaaeeeeesesssnaaeeeeeeesas 12

Table of Contents il

1.4.6 LexXiCal BIOCKS ...cooveiiiiiiieeeeeee ettt ettt e ettt e e eaae e e seaaeeeeenaaeeennes 13

147 SEAtEIMENLS. ...c.eiuieiiiiiiirtieieee ettt ettt sttt ettt s sttt 14
L8 EVENLS ..ttt sttt st sttt 15
1.4.9 EXPIESSIONSeiivieetieetieeiieeieeeteesteeeteesteeesteesteeesseessseeasseesnsaessseessseessseessseensseesnseennses 17
L5 SIGNALS L.ttt 19
1.5.1 Signals Used Internally by PGDBGcccooieieieieieeie sttt 20
1.6 DEBUGGING FORTRAN.......coiuiiiiiiiiiiiiiiiiei i 20
La0.1 ATTAYS ettt ettt st sttt ettt e a e e bt e s bt e b e e bt et et eatesbeenbeenaeenteens 20
1.6.2 OPCTALOTS ..eeeuvveerieeiieeieeeiieeeiteeeteesteeeteesteessseesseessseessseeasseesssaessseessseessseesssesssseensesnnses 20
1.6.3 Name of Main ROULINGcoeeuiiiiiiiiiiiiieicceee et 21
1.6.4 Fortran Common BIOCKS..........cccoiiiiiiiiiniieiiccrce e 21
1.6.5 Nested SUDIOULINESccuevviriiriieieiiiieietese ettt s st 21
1.6.6 Fortran 90 MOUIEScc.coueiriinieiniiieiititcteieretee ettt 22
1.7 DEBUGGING CH i 23
L8 CORE FILES ...t 24
1.9 PGDBG COMMANDS.......oouiiiiiiiiiiiitiitiie ettt 24
1.9.1 COMMANAS ..ottt ettt ettt s sttt s st 24
1.9.1.1 Process CONMIOL.......c..ccueuirieiiiiriiiiirieieiertet ettt 25
1.9.1.2 Process-TRread Sets........coccoeiriieiriiiiiriieenieeenee et 27
LLOU T3 EVENLS ottt sttt st ettt st 28
1.9.1.4 Program LOCAtiONS.cc.eiuiiiiiieniieitete ettt sttt et st e i et ens 35
1.9.1.5 Printing and Setting Variablesccocieiiiiieieieeese e 37
1.9.1.6 Symbols and EXPreSSIONScceeoueruiruerirtieieieiesiese sttt eeteeestesiesee et et eneeneeseenee e 39
LB R A 1T o <RSPPI 41
1.9.1.8 REGISTET ACCESS. .. eutertietietieieeie ettt stte et ettt et et e st e bt et e et satesbtesbee bt enteeaeeeaeenbeenteens 43
1.9.1.9 MEIMOTY ACCESS -..euvtentientienieeiieeitesttenttente et eite et et e st e e eatesbeesbeesbeebeebesatesaeenbeenaeenteens 44
1.9.1.10 CONVETSIONSenviiiirenienientieieett ettt sttt ese et et sae sttt ese s saebesaesbe e s eanesaenenne 46
1.9.1.11 MiISCEIIANEGOUS ...ttt 47

Table of Contents

1.10 COMMANDS SUMMARY ...vvviiiiieiieiieeeeeeeeeeesiateeeeeeseeessssssteeseessssaaseessesssssssresssesssssssssssseessennns 52

1.11 REGISTER SYMBOLS......cootiuiiiimiiiiiiiiiiii ittt st s s e 59
1.11.1 X86 RegiStEr SYMDOLSccueiiiiiiieiiiti ettt 59
1.11.2 AMD64 RegiSter SYMDOIS.....c..oiuiiiiiiiieiiiieieeee e 61

1.12 PGDBG GRAPHICAL USER INTERFACEccocoiiiiiiiiiiiiiiiiiiec e 63
1.12.1 Main WINAOW ..ottt sttt 64
1.12.2 S0UICE PANEL ...t s 72
1.12.3 SUDWINAOWS....cueiiiitiiiiiitirteiet ettt ettt ettt 77
1.12.3.1 MemOry SUDWINAOWc..oiuiiiieiieiieieieeie ettt ettt sttt st eae et e e sae e e 79

1.13 PGDBG: PARALLEL DEBUG CAPABILITIESccocouiiiiiiiiiiiiiiiii e 87
1.13.1 OpenMP and Linuxthread SUPPOIT........cccvevvieviieiiiieiieriieie et 87
1132 IMPT SUPPOTL...eiiiiiieiiieciie ettt ettt et e et e sbe e et esteesabeessbeeesseessseesnsaesnsaesnseesnseennsses 87
1.13.3 Process & Thread COntrol..........coecueiriieiniinieinieieiniceereee st 88
1.13.4 Graphical Presentation of Threads and Processes..........cccoevveevevienieenieeieieeieesieennene 88

1.14 DEBUGGING PARALLEL PROGRAMS WITH PGDBG.........ccccccceviiiiiiiiiiiiiiiiiiieeces &9
1.14.1 Processes and TRIeadscccoceviiririieiniieincteerceet et 89
1.14.2 Thread-Parallel Debugging...........ccoociiieiiieieieiee st 90
1.14.3 Graphical FEAtUIESccvivviiiieeiieiiecieeieeie ettt et ettt b e b s taesaeesaeeaeenae e 91
1.14.4 Process-Paralle]l DEDUZZINGcc.ovuiiuiiiiiiieieeese et 92
1.14.4.3 LAM-MPI SUDPPOTL ...oviiiiiiiiiiiieiinieietentet ettt ettt et 95

1.15 THREAD-PARALLEL AND PROCESS-PARALLEL DEBUGGINGccocoviuiiiiiiiiiiiiieicecienens 95
1.15.1 PGDBG DEbUZ MOAESeouiuieiienieieieeie ettt sttt ettt see e 95
1.15.2 Threads-only debUZZINGc.coeiiiiiiiiiieeieeee et 96
1.15.3 Process-only debUZZINGcoieiriiiiiiiiieieieee ettt 97
1.15.4 Multilevel debUZ@INGoruiiiiiiiiiieieieee ettt 97
1.15.5 Process/TRread SELScc.ceverieiiriinieiiniiieiericteesteee ettt ettt 98
1.15.6 P/t=S€t NOLALION «.c.etintiiitiiciietertct ettt ettt ettt sttt enes 98
1.15.7 Dynamic vs. StatiC P/t-SELS........coiriririeieiieieeee ettt 100

Table of Contents v

1.15.8 Current VS. PIefIX P/=SEL c...vviiiieiiiiieie ettt e eaaee e 101

1.15.9 P/t-8€t COMMANASc..euviviriiiieiiieieticieier ettt 101
1.15.10 COmMMANA SEL......evuimieuiriiieiiriiieiirtitee ettt ettt ettt be bbb enes 106
1.15.11 Process and Thread Control..........coecveiriirinieiiinieieeneieeseteeseeeee e 109
1.15.12 Configurable Stop MOAEcoeeieriiiiiieieeieeie ettt 110
1.15.13 Configurable Wait MOdE........cccueriiiiiiiiiieiiee e e 111
L1514 Status MESSAZES -.c.uveeuveteeniieieeieeie et sitestte et et et eitesbeesttebeenbeestessaesbeesbeenaeeaeeneeeaee 114
1.15.15 The PGDBG Command Promptccceeeuiiiiiieiienieerieieeeeeee e 115
1.15.16 Parallel EVENLSc.coueoiiiriiieiniiieieriete ettt 116
1.15.17 Parallel Statements.cccvueeriirieirinieiniiieirieeeiertet ettt ettt 118
1.16 OPENMP DEBUGGINGccuiuiiiiiiniiiiiiiiiti ettt st 120
1.16.1 Serial vs. Parallel REZIONScc.oiiiiiiiiiieieieeie ettt 120
1.16.2 The PGDBG OpenMP Event Handler.............cocoevvieiiiiiiieiieieeiececeeeee e 121
1.17 MPI DEBUGGING.......cuiiiuiiiiiiiiiiiiiit et s s s e 122
L.17.1 Process CONLIOL.......c..oouiviiriiiiiiieieicienie sttt sttt st 122
1.17.2 Process SYNCRIONIZAtIONocuiiueruiriieteeiietieieie ettt sttt ee st see et se et eneeneeeas 122
1.17.3 MPI MeSSAZE QUEUELSeeutieuiieiiiiiieiiie ettt ettt st stee ettt eitesbee bt e bt e ae e eneenae 123
1.17.4 IMPL GTOUPS .onevieeiiieeiiieeieeeiteeeiteette e teetee e tteestaeessseessseessseensseessseeasseesnsaesssessnseesnseenn 124
1.17.5 MPI LiStener PrOCESSES.c.cccueriiriiriiriiriieiieieieiente sttt sae et ae e e s 124
1.17.6 SSH and RSHc.oouiiiiiiiiiccc ettt 125
THE PGPROF PROFILER 127
2.1 INTRODUCTIONc.cuiiiiiniitiitiieic s e e 127
2.1.1 Definition Of TEIMS ..c..coviviiiieiieieieientient ettt 128
2.1.2 COMPIIALION ..veeiiieeiieeciieecte ettt ettt e et e e e et e eaaeestaeessaaensae e sseenseeensneenseean 129
2.1.3 Program EXECULIONco.eiiuiiiiiiiiiiieieciie ettt st s 130
2.1.4 Profiler Invocation and Initialization...........c..cccoeevinininininiiiiiccicne e 130

Vi

Table of Contents

2.1.5 VITTUAL TIMET ..eoeiniiieieeeeee ettt e e e et e e e etta e e e enaaeessnaeessenaeeeeas 132

2.1.6 PrOfIle DIAtac.eoeieieieeeeieee ettt sttt ettt aeeae e een 132
217 CAVEALS ...ttt ettt s a e bbbt et b e beennean 133
2.2 GRAPHICAL USER INTERFACE........coitiiiiiiiiiiiiiiiiciiiteie it 134
2.2.1 The PGPROF GUIL LAYOULc.evuiiiiiriiieiiniinicinientetsteseet ettt 135
2.2.2 Profile NavIZatiOnccceieiiieieiieeieeteee ettt sttt ettt te e e seesbeebeeae et eneeneenaens 139
2.2.3 PGPROF MEIUScoouimiiuiriinieiiiiinteteieneetete sttt sttt sttt sttt sttt st ettt naenen 142
2.2.4 Selecting and Sorting Profile Data...........ccooiiiiiiiiiiieieeeeee e 153
2.2.5 Scalability COMPATISONeeruiitieiieieiie ettt sttt 156
2.3 COMMAND LANGUAGEcoiiiiiiiiiiiiiiiiiieicie ittt 159
2.3.1 CommANd USAZE ... c..eeruieiiiiiiiie ittt ettt ettt ettt st e bt ettt et eaeesaeenbeenaeas 159
INDEX 163
LIST OF TABLES
Table 1-1: PGDBG OPEIALOTS.eecveerieereeireeieeiteesteesteerteeseessesseesseesseesseassesssesssesssesseesseessesssesssenns 19
Table 1-2: PGDBG COMMANGScoueiiiiiiiitietietietieieie ettt sttt este st estesae et ebeeseeneeeensesseseeeaene 52
Table 1-3: General REGISTETScciiiiieieieieeeste sttt ettt sttt eee et e e seestesbeeaeeneens 60
Table 1-4: x87 Floating-Point Stack REGISTETSc.eciririeieieieieriee et 60
Table 1-5: SegMent REGISLEISc.eeuiiiitieiieieieieiee ettt ettt et ettt et e e sbeseesbesaeeneene 60
Table 1-6: Special PUrpose REZISIEIS.cvuiiuiiieieieiieeere ettt 61
Table 1-7: General REGISTETSccciiiiieieieieieeste sttt ettt ettt ettt et e eesbesbesbeeeeeneens 61
Table 1-8: Floating-Point REGISTETScueiiiiiiiieie ettt 61

Table of Contents vii

Table 1-9: Segment REGISTEIScc.eiuiiieieieieie ettt sttt ettt 62

Table 1-10: Special Purpose REISLETSco.eiuiiirieieiee et 62
Table 1-11: SSE REISTETScueiuiieietieiieiieieie ettt ettt sttt eae et e et e tesaesbeeneeneeneeneas 62
Figure 1-1: Default Appearance of PGDBG GUIcccooiiiiiiiiiiiiiceeeeee e 64
Figure 1-2: PGDBG Program [/O WINAOWcceiiiiiiiiiieieieiese ettt 65
Table 1-12: Thread State is Described using Color..........ccuooviiiiiiiiiiieieee e 91
Table 1-13: Process state is described USing COLOTcoviiiiiiiiiiiiieieiee e 93
Table 1-14: MPI-CH SUPPOTILt......eieiiiiiiieeiieeitteeieeerieeeieeeteeeieeeteeeteessaeesteessaeenseessaeensaeessasnsens 94
Table 1-15: The PGDBG Debug MOdESc.ceeeiiiiiiiiieiiieieeieee ettt 96
Table 1-16: P/t-Set COMMANAScoveuiriiriiiriiiiirieeeerccete ettt 102
Table 1-17: PGDBG Parallel COmMMANdS.........cccecerueiriirieinineiiinieineseeeiesreesiesre e 106
Table 1-18: PGDBG StOP MOUESc.veevieeiiiiiiiiieiteeiteete ettt ettt eveeseessesaesaaesreesseeseessesnneans 110
Table 1-19: PGDBG Wait MOAES........cccucouiriimiiniiiiiieieieniesiese sttt st saesne s 111
Table 1-20: PGDBG Wait BERAVIOTcccccviriiiriiiiiriciicncecc ettt 113
Table 1-21: PGDBG Stattis MESSAZESccveeueruiirieniienieeieeiteettenteeieenteseeesteesseenaesaesieesaeenseeneeenes 114
Table 2-1: Default Bar Chart COLOTSccceireiiineirinieiriietriee e 145

viii Table of Contents

LIST OF FIGURES

Figure 1-1: Default Appearance of PGDBG GUIL.........cccooiiiiiiiiiiiiiinieieieeeese e 64
Figure 1-2: PGDBG Program I/O WINAOWccceoieiiiiiiiiiiieiieieieiee et 65
Figure 1-3: PGDBG GUI with All Control Panels Visible...........ccccooiiiiiiiiiiiieeicccecenee 66
Figure 1-4: Process Grid with Inner Thread Grid...........coocooiiiiiiiiiniieeee e 69
Figure 1-5: PGDBG Help UtIIEY ...cooueiiiiiiiieiieteeeeeeeee ettt 71
Figure 1-6: Opening a Subwindow with a Pop-up Menuccccovieiiiiiniiniiniinccceceee 78
Figure 1-7: Memory SUDWINAOWcoouiiiiiiiiiiiieiceeee ettt 80
Figure 1-8: Disassembler SUDWINAOWc.ooiiiiirieieieieie ettt 82
Figure 1-9: Registers SUDWINAOW........couiiiiiiiiieieiee ettt eee e 83
Figure 1-10: Custom SUDWINAOWcouiiuiiiiiiieieiee ettt sttt e e eeeeneeneas 84
Figure 1-11: Data POP-UP MENUcc.coiiiiiiiiiiiiieieeeet ettt 86
Figure 1-12: Focus Group Dialog BOXcceiieieieriiieiiieieeiieeee et 104
Figure 1-13: Focus in the GUI ..ottt 105
Figure 1-14: Messages SUDWINAOWcciiiiiiieieieieriieteeeeecee ettt st eneens 124
Figure 2-1: Profiler WINAOWc..coiiiiiiiiiieee et s 138
Figure 2-2: PGPROF with Visible Process/Thread Selector...........coccevieienieienineneiieieieieene 139
Figure 2-3: Example Routine Level Profile...........coocooiiiiiiiiiii e 141
Figure 2-4: Example Line Level Profilecoccooiiiiiiiiiieeeee e 142

Table of Contents ix

Figure 2-5: Bar Chart Color Dialog BOXcooieiiiiiiiii e 146

Figure 2-6: Font Chooser Dialog BOXccouiiuiiiiiiieieiee et 147
Figure 2-7: PGPROF HEIP ..ottt 148
Figure 2-8: PGPROF with Max, Av@, Mil TOWScccoooiiieieieieieeeeie ettt 149
Figure 2-9: Source Lines with Multiple Profile Entries...........ccoccoiiiiiiiiiiieieieecececeeee 152
Figure 2-10: Selecting Profile Entries with Counts Greater Than 1............ccccoooiniiiiiininieienenn. 155
Figure 2-11: Profile of an Application Run with 1 Process..........ccceeveiieiinenieniiinieieieeene 157
Figure 2-12: Profile with Visible Scale COIUMNcccoiiiiiiiiiieeeseee e 158

X Table of Contents

Preface

This guide describes how to use The Portland Group Compiler Technology (PGI) Fortran, C, and
C++ debugger and profiler tools. In particular, these include the PGPROF profiler, and the
PGDBG debugger. You can use the PGI compilers and tools to debug and profile serial (uni-
processor) and parallel (multi-processor) applications for X86 and AMD64 processor-based
systems.

Intended Audience

This guide is intended for scientists and engineers using the PGI debugging and profiling tools. To
use these tools, you should be aware of the role of high-level languages (e.g., Fortran, C, C++)
and assembly-language in the software development process and should have some level of
understanding of programming. The PGI tools are available on a variety of operating systems for
the X86 and AMD64 hardware platforms. You need to be familiar with the basic commands
available on your system.

Finally, your system needs to be running a properly installed and configured version of the

compilers and tools. For information on installing PGI compilers and tools, refer to the installation
instructions.

Preface 1

Compatibility and Conformance to Standards

The PGI compilers and tools run on a variety of systems. They produce and/or process code that
conforms to the ANSI standards for FORTRAN 77, Fortran 9x, C, and C++ and includes
extensions from MIL-STD-1753, VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray
Fortran, and K&R C. PGF77, PGF90, PGCC ANSI C, and C++ support parallelization
extensions based on the OpenMP defacto standard. PGHPF supports data parallel extensions
based on the High Performance Fortran (HPF) defacto standard. The PGI Fortran reference
manuals describe Fortran statements and extensions as implemented in the PGI Fortran compilers.
PGDBG permits debugging of serial and parallel (OpenMP and/or MPI) programs compiled with
PGI compilers. PGPROF permits profiling of serial and parallel (OpenMP and/or MPI) programs
compiled with PGI compilers.

For further information, refer to the following:
e American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
e American National Standard Programming Language FORTRAN, ANSI X3. -1991 (1991).
e [nternational Language Standard ISO Standard 1539-199 (E).
o Fortran 90 Handbook, Intertext-McGraw Hill, New York, NY, 1992.

e High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston,
Texas (1993), http://www.crpc.rice.edu/HPFF.

e High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston,
Texas (1997), http://www.crpc.rice.edu/HPFF.

e OpenMP Fortran Application Program Interface, Version 1.1, November 1999,
http://www.openmp.org.

e OpenMP C and C++ Application Program Interface, Version 1.0, October 1998,
http://www.openmp.org.

e Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

e IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

e Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

e American National Standard Programming Language C, ANSI X3.159-1989.

2 Preface

Organization

HPDF Standard (High Performance Debugging Forum)
http://www.ptools.org/hpdf/draft/intro.html

This manual is divided into the following chapters:

Preface

Chapter 1

Chapter 2

The PGDBG Debugger describes the PGDBG symbolic debugger.
PGDBG is a symbolic debugger for Fortran, C, C++ and assembly
language programs. Sections 1.1 through 1.13 describe PGDBG
invocation, commands, signals, debugging Fortran and C++ using
PGDBG, the PGDBG graphical user interface, and PGDBG parallel
debugging capabilities.

1.14 Debugging Parallel Programs with PGDBG describes how to

invoke the debugger for thread-parallel (SMP) debugging and for
process-parallel (MPI) debugging.

1.15 Thread-parallel and Process-parallel Debugging describes how to
name a single thread, how to group threads and processes into sets, and
how to apply PGDBG commands to groups of processes and threads.

1.16 OpenMP Debugging describes some debug situations within the
context of a single process composed of many OpenMP threads.

1.17 MPI Debugging describes how PGDBG is used to debug parallel-
distributed MPI programs and hybrid distributed SMP programs.

The PGPROF Profiler describes the PGPROF Profiler. This tool
analyzes data generated during execution of specially compiled C,
C++, F77, F9x and HPF programs.

http://www.ptools.org/hpdf/draft/intro.html

Conventions

This guide uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width is used in examples and for language statements in the text, including
assembly language statements.

[iteml] in general, square brackets indicate optional items. In this case item] is
optional. In the context of p/t-sets, square brackets are required to
specify a p/t-set.

{ item2 | item 3} braces indicate that a selection is required. In this case, you must select
either item?2 or item3.

filename ... ellipsis indicate a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown in the text of this guide using upper-
case characters and a reduced point size.

Related Publications

The following documents contain additional information related to the X86 architecture and the
compilers and tools available from The Portland Group Compiler Technology.

PGF77 Reference User Manual describes the FORTRAN 77 statements, data types,
input/output format specifiers, and additional reference material.

PGHPF Reference Manual describes the HPF statements, data types, input/output format
specifiers, and additional reference material.

System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

FORTRAN 90 HANDBOOK, Complete ANSI/ISO Reference (McGraw-Hill, 1992).

Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

Preface

e [BM VS Fortran, IBM Corporation, Rev. GC26-4119.
e The C Programming Language by Kernighan and Ritchie (Prentice Hall).
o (C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

o The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990)

o PGI User’s Guide, PGI Tools Guide, PGI 5.2 Release Notes, FAQ, Tutorials
http://www.pgroup.com/docs.htm

e MPI-CH
http://www.netlib.org/

e OpenMP
http://www.openmp.org/

e Ptools (Parallel Tools Consortium)
http://www.ptools.org/

e HPDF (High Performance Debugging Forum) Standard
http://www.ptools.org/hpdf/draft/intro.html

Preface

http://www.pgroup.com/docs.htm
http://www.netlib.org/
http://www.openmp.org/
http://www.ptools.org/
http://www.ptools.org/hpdf/draft/intro.html

System Requirements
e PGICDK5.2,0r WS 52

e Linux (See http://www.pgroup.com/fag/install.htm for supported releases)

e Intel X86 (and compatible), AMD Athlon, AMD64 processors

6 Preface

http://www.pgroup.com/faq/install.htm

Chapter 1
The PGDBG Debugger

This chapter describes the PGDBG symbolic debugger. PGDBG is a symbolic debugger for
Fortran, C, C++ and assembly language programs. It allows you to control the execution of
programs using breakpoints and single-stepping, and lets you check the state of a program by
examining variables, memory locations, and registers. The following are PGDBG capabilities.

e Provides the capability to debug SMP Linux programs.
e Provides the capability to debug MPI programs on Linux clusters.

e Provides the capability to debug hybrid SMP/MPI programs on Linux clusters where each
node contains multiple CPUs sharing memory but where each node has a separate memory
from all other nodes.

1.1 Definition of Terms

Host The system on which PGDBG executes. This will generally be the system
where source and executable files reside, and where compilation is
performed.

Target A program being debugged.

Target Machine The system on which a target runs. This may or may not be the same
system as the host.

For an introduction to terminology used to describe parallel debugging, see Section 1.14.1
Processes and Threads.

The PGDBG Debugger 7

1.1.1 Compiler Options for Debugging

Use the —g compiler command line option to build programs for debugging. This option causes
information about the symbols and source files in the program to be included in the executable
file. The —g option also sets the optimization to level zero unless you specify —O on the command
line. Programs built with —g and optimization levels higher than —O0 can be debugged, but due to
transformations made to the program during optimization, source-level debugging may not be
reliable. Machine-level debugging (e.g., accessing registers, viewing assembly code, etc.) will be
reliable, even with optimized code. Programs built without —g can be debugged; however,
information about types, local variables, arguments and source file line numbers is not available
unless you specify —g.

When the -g compiler command line option is used, PGI compilers emit DWARF Version 2 debug
information by default. To emit DWARF Version 1 debug information, specify the -Mdwarf1
option with the -g option at the compiler command line.

1.2 Invocation and Initialization

PGDBG is invoked using the pgdbg command as follows:

o

% pgdbg arguments program argl arg2 ... argn

where arguments may be any of the command-line arguments described in the following section,
Command-line Arguments. See 1.14.4.1 Invoking PGDBG: MPI Debugging for how to debug an
MPI program.

The program or debugee is the name of the target program being debugged. The arguments arg1
arg2 .. argn are the command-line arguments to the target program. After initiating a debug
session using the commands above, PGDBG will invoke its Graphical User Interface (GUI) by
default (Section 1.12 PGDBG GRAPHICAL USER INTERFACE). You can also invoke a
command-line interface with the —text command-line argument (Section 1.3 Command-Line
Arguments). After starting PGDBG, the debugger begins by creating a symbol table for the
program. Then the program is loaded into memory.

If an initialization file named . pgdbgrc exists in the current directory or in the home directory, it
is opened and PGDBG executes the commands in the file. The initialization file is useful for
defining common aliases, setting breakpoints and for other startup commands. If an initialization
file is found in the current directory, then the initialization file in the home directory, if there is
one, is ignored. However, a script command placed in the initialization file may execute the
initialization file in the home directory, or execute PGDBG commands in any other file (for
example in the file . dbxinit if you have a dbx debugger initialization file set up).

8 Chapter 1

After processing the initialization file, PGDBG is ready to process commands. Normally, a session
begins by setting one or more breakpoints, using the break, stop or trace commands, and then
issuing a run command followed by cont, step, trace or next.

1.3 Command-Line Arguments

The pgdbg command accepts several command line arguments that must appear on the command
line before the name of the program being debugged. The valid options are:

—dbx

——program_args

—S startup

—c "command"

-T

—text

—tp k8-32

—tp k8-64

-motif

-help

The PGDBG Debugger

Start the debugger in dbx mode.

PGDBG passes all arguments following this command line option to
the program being debugged if an executable is included on the
command line. This command-line argument should appear after the
name of the executable (e.g., pgdbg a.out —program_args 0 1 2 3).

The default initialization file is ~/.pgdbgrc. The —s option specifies an
alternate initialization file startup.

Execute the debugger command command (command must be in
double quotes) before executing the commands in the startup file.

Run the debugger without first waiting for a command. If the program
being debugged runs successfully, the debugger terminates. Otherwise,
the debugger is invoked and stops when the trap occurs.

Run the debugger using a command-line interface (CLI). The default is
for the debugger to launch in graphical user interface (GUI) mode.

Debug a program running on an X86 target machine. This option is
only necessary if the default PGDBG, determined by the PATH
environment variable, is not capable of debugging X86 targeted
programs (AMD Opteron™ only).

Debug a program running on an AMD64 target machine. This option is
only necessary if the default PGDBG, determined by the PATH
environment variable, is not capable of debugging AMD64 targeted
programs (AMD Opteron™ only).

Use the older (Motif) version of the Graphical User Interface (GUI)
(Not available on every platform).

Display a list of command-line arguments (this list).

-I <directory> Adds <directory> to the list of directories that PGDBG uses to search
for source files.

1.4 Command Language

There are two methods for telling PGDBG what to do. You can type a command through a
command-line interface or invoke a command through a Graphical User Interface (GUI). In this
section we will describe how to instruct PGDBG through a command-line interface. We introduce
the GUI in Section 1.12 PGDBG GRAPHICAL USER INTERFACE.

In order to instruct PGDBG through its command-line interface, you will need to learn the
PGDBG Command Language. Commands are entered in the command-line interface one line at a
time. Lines are delimited with a carriage return (invoked by the Enter key on most systems). After
pressing Enter, PGDBG will process the line. Each line must begin with the name of a command
and its arguments, if any. The command language is composed of commands, constants, symbols,
locations, expressions, and statements.

Commands are named operations, which take zero or more arguments and perform some action.
Commands may also return values that may be used in expressions or as arguments to other
commands.

There are two command modes: pgi and dbx. The pgi command mode maintains the original
PGDBG command interface. In dbx mode, the debugger uses commands with a syntax compatible
with the familiar dbx debugger. Both command sets are available in both command modes,
however some commands have a slightly different syntax depending on the mode. The pgienv
command allows you to change modes while running the debugger.

1.4.1 Constants

The debugger supports C language style integer (hex, octal and decimal), floating point, character,
and string constants.

1.4.2 Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol
table for the target program. The symbol table contains symbols to represent source files,
subprograms (functions, and subroutines), types (including structure, union, pointer, array, and
enumeration types), variables, and arguments. Symbol names are case-sensitive and must match
the name as it appears in the object file.

10 Chapter 1

The compilers add an underscore character, " ", to the beginning of each external identifier. On
UNIX systems, the PGI Fortran compilers also add an underscore to the end of each external
identifier. Therefore, if PGDBG is unable to locate a symbol as entered, it prepends an underscore
and tries again. If that fails, it adds an underscore to the end of the name and tries again. If that
fails, the leading underscore is stripped and the search is repeated. For example, if cfunc and
ffunc are C and Fortran routines, respectively, then the names for the symbols in the object file
are _cfunc and ffunc . PGDBG will accept cfunc, and _cfunc as names for cfunc, and will
accept ffunc, ffunc,and ffunc asnames for ffunc . Note however, that due to case-
sensitivity, FFUNC, FFUNC, etc. are not accepted as names for _ffunc .

1.4.3 Scope Rules

Since several symbols may have the same name, scope rules are used to bind identifiers to
symbols. PGDBG uses a notion of search scope for looking up identifiers. The search scope is a
symbol which represents a routine, a source file, or global scope. When the user enters a name,
PGDBG first tries to find the symbol in the search scope. If the symbol is not found, the
containing scope, (source file, or global) is searched, and so forth, until either the symbol is
located or the global scope is searched and the symbol is not found.

Normally, the search scope will be the same as the current scope, which is the routine where
execution is currently stopped. The current scope and the search scope are both set to the current
routine each time execution of the target program stops. However, the enter command changes the
search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if £ is a
routine with a local variable i, then:

fei

represents the variable i local to £. Identifiers at file scope can be specified using the quoted file
name with this operator, for example:

"xyz.c"@1

represents the variable i defined in file xyz.c.

The PGDBG Debugger 11

1.4.4 Register Symbols

In order to provide access to the system registers, PGDBG builds symbols for them. Register
names generally begin with $ to avoid conflicts with program identifiers. Each register symbol has
a type associated with it, and registers are treated like global variables of that type, except that
their address may not be taken. See Section 1.10 Commands Summary for a complete list of the
register symbols.

1.4.5 Source Code Locations

Some commands need to reference code locations. Source file names must be enclosed in double
quotes. Source lines are indicated by number, and may be qualified by a quoted filename using the
scope qualifier operator.

Thus:

break 37

sets a breakpoint at line 37 of the current source file, and

break "xyz.c"@37
sets a breakpoint at line 37 of the source file xyz.c.

A range of lines is indicated using the range operator ":". Thus,

list 3:13

lists lines 3 through 13 of the current file, and

list "xyz.c"@3:13
lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is
not always obvious whether a numeric constant should be interpreted as a line number or an
address. The description for these commands says which interpretation is used. However, the
conversion commands /ine, and addr convert a constant to a line, or to an address respectively.
For example:

{line 37}

12 Chapter 1

means "line 37",

{addr 0x1000}

means "address 0x1000" , and

{addr {line 37}}

means "the address associated with line 37" , and

{line {addr 0x1000}}

means "the line associated with address 0x1000".

1.4.6 Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained
by a lexical block indicates the start scope of the lexical block.

Below variable var is declared in the lexical block starting at line 5. The lexical block has the
unique name "lex.c"@main@5. The variable var declared in "lex.c"@main@35 has the unique

name "lex.c"@main@5@var.

For Example:

lex.c:
main ()
{
int var = 0;
{
int var = 1;
printf ("var %$d\n",var) ;
}
printf ("var %d\n",var)

}

pgdbg> n
Stopped at 0x8048b10, function main, file
/home /pete/pgdbg/bugs/workon3/ctest/lex.c, line 6

#6: printf ("var %d\n",var) ;
pagdbg> print var
1

pgdbg> which var
"lex.c"@main@5@var

pgdbg> whereis var

variable: "lex.c"@main@var

The PGDBG Debugger 13

variable: "lex.c"@main@5@var
pgdbg> names "lex.c"@main@5
var = 1

1.4.7 Statements

Although input is processed one line at a time, statement constructs allow multiple commands per
line, and conditional and iterative execution. The statement constructs roughly correspond to the
analogous C language constructs. Statements may be of the following forms.

Simple Statement: A command, and its arguments. For example:
print i
Block Statement: One or more statements separated by semicolons and enclosed in curly braces.

Note: these may only be used as arguments to commands or as part of if or while statements. For
example:

if (i>1) {print i; step }
If Statement: The keyword if followed by a parenthesized expression, followed by a block
statement, followed by zero or more else if clauses, and at most one else clause. For example:
if(i>j) {print i} else if(i<j) {print j} else {print "i==j"}
While Statement: The keyword while followed by a parenthesized expression, followed by a block
statement. For example:

while (1i==0) {next}

Multiple statements may appear on a line by separating them with a semicolon. For example:

break main; break xyz; cont; where

sets breakpoints in routines main and xyz, continues, and prints the new current location. Any
value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. See Section 1.15.17 Parallel
Statements for details.

14 Chapter 1

1.4.8 Events

Breakpoints, watchpoints and other mechanisms used to define the response to certain conditions,
are collectively called events.

e Anevent is defined by the conditions under which the event occurs, and by the action taken
when the event occurs.

e A breakpoint occurs when execution reaches a particular address. The default action for a
breakpoint is simply to halt execution and prompt the user for commands.

e A watchpoint occurs when the value of an expression changes.
The default action is to print the new value of the expression, and prompt the user for commands.
By adding a location, or a condition, the event can be limited to a particular address or routine, or

may occur only when the condition is true. The action to be taken when an event occurs can be
defined by specifying a command list.

PGDBG supports four basic commands for defining events. Each command takes a required
argument and may also take one or more optional arguments. The basic commands are break,
watch, track and do. The command break takes an argument specifying a breakpoint location.
Execution stops when that location is reached. The watch command takes an expression argument.
Execution stops and the new value is printed when the value of the expression changes.

The track command is like watch except that execution continues after the new value is printed.
The do command takes a list of commands as an argument. The commands are executed whenever
the event occurs.

The optional arguments bring flexibility to the event definition. They are:
at line Event occurs at indicated line.
at addr Event occurs at indicated address.
in routine Eventoccurs throughout indicated routine.

if (condition)

Event occurs only when condition is true.

do {commands}

When event occurs execute commands.

The optional arguments may appear in any order after the required argument and should not be
delimited by commas.

The PGDBG Debugger 15

For example:
watch 1 at 37 if(y>1)
This event definition says that whenever execution is at line 37, and the value of i has changed

since the last time execution was at line 37, and vy is greater than 1, stop and print the new value of
i.

do {print xyz} in f

This event definition says that at each line in the routine f print the value of xyz.

break funcl if (i==37) do {print al[37]; stack}

This event definition says that each time the routine funcl is entered and 1 is equal to 37, then
the value of a [37] should be printed, and a stack trace should be performed.

Event commands that do not explicitly define a location will occur at each source line in the
program. For example:

do {where}

prints the current location at the start of each source line, and

track a.b

prints the value of a . b at the start of each source line if the value has changed.

Events that occur at every line can be useful, but to perform them requires single-stepping the
target program (this may slow execution considerably). Restricting an event to a particular address
causes minimal impact on program execution speed, while restricting an event to a single routine
causes execution to be slowed only when that routine is executed.

PGDBG supports instruction level versions of several commands (for example breaki, watchi,
tracki, and doi). The basic difference in the instruction version is that these commands will
interpret integers as addresses rather than line numbers, and events will occur at each instruction
rather than at each line.

When multiple events occur at the same location, all event actions will be taken before the prompt
for input. Defining event actions that resume execution is allowed but discouraged, since
continuing execution may prevent or defer other event actions. For example:

break 37 do {continue}

break 37 do {print i}

This creates an ambiguous situation. It's not clear whether i should ever be printed.

16 Chapter 1

Events only occur after the continue and run commands. They are ignored by step, next, call, and
other commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example:

break 37

sets a breakpoint at line 37 in the current file.

track i

will track the value of whatever variable i is currently in scope. If i is a local variable then it is
wise to add a location modifier (at or in) to restrict the event to a scope where i is defined.

Scope qualifiers can also specify lines or variables that are not currently in scope. Events can be
parallelized across multiple threads of execution. See Section 1.15.16 Parallel Events for details.

1.4.9 Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, and
commands if they return values, and operators. Table 1-1 shows the C language operators that are
supported. The operator precedence is the same as in the C language.

To use a value returned by a command in an expression, the command and arguments must be
enclosed in curly braces. For example:

break {pc}+8
invokes the pc command to compute the current address, adds 8 to it, and sets a breakpoint at that

address. Similarly, the following command compares the start address of the current routine, with
the start address of routine xyz, and prints the value 1, if they are equal and 0 otherwise.

print {addr {func}}=={addr xyz}

The ¢ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same
as the C language field selection operators "." , and "->" .

n.n

PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges.
For example,

print af[l:10]

The PGDBG Debugger 17

prints elements 1 through 10 of the array a, and

list 5:10

lists source lines 5 through 10, and

list "xyz.c"@5:10
lists lines 5 through 10 in file xyz.c. The precedence of "' is between '||' and '=' .

The general format for the range operator is [/o : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.
step is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set. See
Section 1.15.8 Current vs. Prefix P/t-set for details.

18 Chapter 1

Table 1-1: PGDBG Operators

Operator Description Operator Description

* indirection <= less than or equal
direct field selection >= greater than or

equal

-> indirect field selection | != not equal

[1] array index && logical and

0 routine call | logical or

& address of ! logical not

+ add | bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide A bitwise exclusive
or

* multiply << left shift

= assignment >> right shift

== comparison

<< left shift

>> right shift

1.5 Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program, and passes
them on according to that signal's disposition as maintained by PGDBG (see the catch, ignore
commands).

If a thread runs into a busy loop or if the program runs into deadlock, control-C over the
debugging command line to interrupt the threads. This causes SIGINT to be sent to all threads. By
default PGDBG does not relay SIGINT to any of the threads, so in most cases program behavior is
not affected.

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads
(calling omp_set num_threads(), or entering a parallel region) may kill some of the threads if the

The PGDBG Debugger 19

signal is sent before each thread is fully initialized. Avoid sending SIGINT in these situations.
When the number of threads employed by a program is large, thread initialization may take a
while.

Sending SIGINT (control-C) to a running MPI program is not recommended. See Section 1.17.5
MPI Listener Processes for details. Use the halt command as an alternative to sending SIGINT to
a running program. The PGDBG command prompt must be available in order to issue a halt
command. The PGDBG command is available while threads are running if pgienv threadwait
none is set.

1.5.1 Signals Used Internally by PGDBG

SIGTRAP indicates a breakpoint has been hit. A message is displayed whenever a thread hits a
breakpoint. SIGSTOP is used internally by PGDBG. Its use is mostly invisible to the user.
Changing the disposition of these signals in PGDBG will result in undefined behavior.

Reserved Signals: On Linux, the thread library uses SIGRT1, SIGRT3 to communicate among
threads internally. In the absence of real-time signals in the kernel, SIGUSR1, SIGUSR2 are used.
Changing the disposition of these signals in PGDBG will result in undefined behavior.

1.6 Debugging Fortran

In order to create symbolic information for debugging, invoke your PGI Fortran compiler with the
—g option. Fortran type declarations are printed using Fortran type names, not C type names. The
only exception is Fortran character types, which are treated as arrays of C characters.

1.6.1 Arrays

Large arrays (e.g., arrays with an aggregate size greater than 2GB), arrays with lower dimensions,
and adjustable arrays are all supported. Fortran array elements and ranges should be accessed
using parentheses, rather than square brackets.

1.6.2 Operators

Only those operators that exist in the C language may be used in expressions. In particular .eq.,
.ne., and so forth are not supported. The analogous C operators ==, !=, etc. must be used instead.
Note that the precedence of operators matches the C language, which may in some cases be
different than for Fortran.

20 Chapter 1

1.6.3 Name of Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the program
statement. Otherwise, the name of the main routine is __unnamed_. A routine symbol named
_MAIN_is defined with start address equal to the start of the main routine. As a result,

break MAIN

can always be used to set a breakpoint at the start of the main routine.

1.6.4 Fortran Common Blocks

Each subprogram that defines a common block will have a local static variable symbol to define
the common. The address of the variable will be the address of the common block. The type of the
variable will be a locally defined structure type with fields defined for each element of the
common block. The name of the variable will be the common block name, if the common block
has aname, or BLNK otherwise.

For each member of the common block, a local static variable is declared which represents the
common block variable. Thus given declarations:

common /xyz/ integer a, real b

then the entire common block can be printed out using,

print xyz

and the individual elements can be accessed by name as in,

print a, b

1.6.5 Nested Subroutines

To reference a nested subroutine you must qualify its name with the name of its enclosing routine
using the scoping operator @.

For example:

subroutine subtest (ndim)

integer(4), intent(in) :: ndim
integer, dimension(ndim) :: ijk
call subsubtest ()

contains

The PGDBG Debugger 21

subroutine subsubtest ()
integer :: I
i=9
ijk(1) =1
end subroutine subsubtest
subroutine subsubtest2 ()
ijk(l) =1
end subroutine subsubtest?2
end subroutine subtest
program testscope
integer(4), parameter :: ndim = 4
call subtest (ndim)
end program testscope

pgdbg> break subtest@subsubtest

breakpoint set at: subsubtest line: 8 in "ex.f90" address:

pgdbg> names subtest@subsubtest

i =0

pgdbg> decls subtest@subsubtest

arguments:

variables:

integer*4 1i;

pgdbg> whereis subsubtest

function: "ex.f90"@subtest@subsubtest

1.6.6 Fortran 90 Modules

To access a member mm of a Fortran 90 module M you must qualify mm

0x80494091

with M using the scoping operator @. If the current scope is M the qualification can be omitted.

For example:

22

module M
implicit none
real mm
contains
subroutine stub
print *,mm
end subroutine stub
end module M

Chapter 1

program test
use M
implicit none
call stub()
print *,mm
end program test

pgdbg> Stopped at 0x80494e3, function MAIN, file M.f90, line 13
#13: call stub ()

pgdbg> which mm

"M.£90"@m@mm

pgdbg> print "M.£f90"@mEmm

0

pgdbg> names m

mm = 0

stub = "M.£90"@m@stub

pgdbg> decls m

real*4 mm;

subroutine stub () ;

pgdbg> print m@mm

0

pgdbg> break stub

breakpoint set at: stub line:6 in "M.f90" address: 0x8049446 1

pgdbg> ¢

Stopped at 0x8049446, function stub, file M.£f90, line 6
#6: print *,mm

pgdbg> print mm

0

pgdbg>

1.7 Debugging C++

In order to create symbolic information for debugging, invoke your PGI C++ compiler with the
—g option.

Calling C++ Instance Methods

To call a C++ instance method, the object must be explicitly passed as the first parameter to the
call. For example, given the following definition of class Person and the appropriate
implementation of its methods:
class Person {
public:
char name[10];
Person (char * name);

The PGDBG Debugger 23

void print();

b

main () {
Person * pierre;
pierre = new Person("Pierre");

pierre.print();

}
To call the instance method print on object pierre, use the following syntax:
pgdbg> call Person::print (pierre)

Notice that pierre is explicitly passed into the method, and the class name must also be
specified.

1.8 Core Files

PGDBG 5.2 does not currently support core file debugging.

1.9 PGDBG Commands

This section describes the PGDBG command set in detail. Section 1.9 PGDBG Commands
presents a table of all the debugger commands, with a summary of their syntax.

1.9.1 Commands

Command names may be abbreviated as indicated. Some commands accept a variety of
arguments. Arguments contained in [and] are optional. Two or more arguments separated by |
indicate that any one of the arguments is acceptable. An ellipsis (. . .) indicates an arbitrarily long
list of arguments. Other punctuation (commas, quotes, etc.) should be entered as shown. Argument
names appear in italics and are chosen to indicate what kind of argument is expected. For
example:

lis[t] [count | lo:hi | routine | line,count]

indicates that the command /ist may be abbreviated to /is, and that it will accept either no
argument, an integer count, a line range, a routine name, or a line and a count.

24 Chapter 1

1.9.1.1 Process Control

The following commands, together with the breakpoints described in the next section, let you
control the execution of the target program. PGDBG lets you easily group and control multiple
threads and processes. See Section 1.15.11 Process and Thread Control for more details.

att[ach] <pid>[<exe>] | [<exe> <host>]

Attach to a running process with process ID <pid>. If the process is not running on the local host, then
you need to specify the absolute path of the executable file (<exe>) and the host machine name
(<host>). For example, attach 1234 will attempt to attach to a running process whose process ID is 1234
on the local host. On a remote host, you may enter something like attach 1234 /home/sw/a.out myhost.
In this example, PGDBG will try to attach to a process ID 1234 called /home/sw/a.out on a host named
myhost.

c[ont]

Continue execution from the current location. This command may also be used to begin execution
of the program at the beginning of the session.

de[bug]

Print the name and arguments of the program being debugged.
det[ach]

Detach from the current running process.

halt

Halt the running process or thread.

n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called
routines. The count argument stops execution after executing count source lines. In a parallel
region of code, next applies only to the currently active thread.

nexti [count]

Stop after executing one instruction in the current routine. This command steps over called
routines. The count argument stops execution after executing count instructions. In a parallel
region of code, nexti applies only to the currently active thread.

The PGDBG Debugger 25

proc [number]

Set the current thread to number. When issued with no argument, proc lists the current program
location of the current thread of the current process. See Section 1.14.4 Process-Parallel
Debugging for how processes are numbered.

procs

Print the status of all active processes. Each process is listed by its logical process ID.

q[uit]
Terminate the debugging session.

rer[un]
rer[un] [arg0 argl ... argn] [< inputfile | [[> | >& | >> | >>&] outputfile]

Works like run except if no args are specified, none are used.

ru[n]
ru[n] [arg0 argl ...argn] [< inputfile | [[> | >& | >> | >>& | outpultfile |

Execute program from the beginning. If arguments arg0, argl, .. are specified, they are set up as
the command line arguments of the program. Otherwise, the arguments for the previous run
command are used. Standard input and standard output for the target program can be redirected
using < or > and an input or output filename.

s[tep]
s[tep] count

step] up

Stop after executing one source line. This command steps into called routines. The count
argument, stops execution after executing count source lines. The up argument stops execution
after stepping out of the current routine. In a parallel region of code, step applies only to the
currently active thread.

stepi
stepi count
stepi up

Stop after executing one instruction. This command steps into called routines. The count argument
stops execution after executing count instructions. The up argument stops the execution after

26 Chapter 1

stepping out of the current routine. In a parallel region of code, stepi applies only to the currently
active thread.

stepo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the
current return address, and does a continue. To work correctly, it must be possible to compute the
value of the return address. Some routines, particularly terminal (or leaf) routines at higher
optimization levels, may not set up a stack frame. Executing stepout from such a routine causes
the breakpoint to be set in the caller of the most recent routine that set up a stack frame. This
command stops immediately upon return to the calling routine. This means that the current
location may not be the start of a source line because multiple routine calls may occur on a single
source line, and you might want to stop after the first call. If you want to step out of the current
routine and continue to the start of the next source line, simply follow stepout with next. In a
parallel region of code, stepout applies only to the currently active thread.

sync
synci

Advance the current process/thread to a specific program location; ignoring any user defined
events.

thread [number]

Set the current thread to the thread identified by number; where number is a logical thread id in
the current process’ active thread list. When issued with no argument, thread lists the current
program location of the currently active thread.

threads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its
logical process id. Each thread is listed by its logical thread id.

wait

Return PGDBG prompt only after specific processes or threads stop.

1.9.1.2 Process-Thread Sets

The following commands deal with defining and managing process thread sets. See Section 1.15.9
P/t-set Commands for a general discussion of process-thread sets.

The PGDBG Debugger 27

defset

Assign a name to a process/thread set. Define a named set. This set can later be referred to by
name. A list of named sets is stored by PGDBG.

focus

Set the target process/thread set for commands. Subsequent commands will be applied to the
members of this set by default.

undefset

'undefine' a previously defined process/thread set. The set is removed from the list. The debugger-
defined p/t-set [al1l] cannot be removed.

viewset

List the members of a process/thread set that currently exist as active threads.

whichsets

List all defined p/t-sets to which the members of a process/thread set belongs.

1.9.1.3 Events

The following commands deal with defining and managing events. See Section 1.4.8 Events for a
general discussion of events, and the optional arguments.

b[reak]
b[reak] line [if (condition)] [do {commands} |
b[reak] func [if (condition)] [do {commands}]

If no argument is specified, print the current breakpoints. Otherwise, set a breakpoint at the
indicated line or routine. If a routine is specified, and the routine was compiled for debugging,
then the breakpoint is set at the start of the first statement in the routine, that is, after the routine’s
prologue code. If the routine was not compiled for debugging, then the breakpoint is set at the first
instruction of the routine, prior to any prologue code. This command interprets integer constants
as line numbers. To set a breakpoint at an address, use the addr command to convert the constant
to an address, or use the breaki command.

28 Chapter 1

When a condition is specified with if, the breakpoint occurs only when the specified condition
evaluates true. If do is specified with a command or several commands as an argument, the
command or commands are executed when the breakpoint occurs.

The following examples set breakpoints at line 37 in the current file, line 37 in file xyz . c, the first
executable line of routine main, address 0x£0400608, the current line, and the current address,
respectively.

break 37
break "xyz.c"@37
break main
break {addr 0xf0400608}
break {line}
break {pc}

More sophisticated examples include:
break xyz if(xyz@n > 10)
This command stops when routine xyz is entered only if the argument # is greater than 10.

break 100 do {print n; stack}

This command prints the value of n and performs a stack trace every time line 100 in the current
file is reached.

breaki
breaki func [if (condition)] [do {commands}]
breaki addr [if (condition)] [do {commands}]

Set a breakpoint at the indicated address or routine. If a routine is specified, the breakpoint is set at
the first address of the routine. This means that when the program stops at this breakpoint the
prologue code which sets up the stack frame will not yet have been executed, and hence, values of
stack arguments will not be correct. Integer constants are interpreted as addresses. To specify a
line, use the /ine command to convert the constant to a line number, or use the hreak command.

The if, and do arguments are interpreted as in the break command. The next examples set
breakpoints at address 0x£0400608, line 37 in the current file, line 37 in file xyz. ¢, the first
executable address of routine main, the current line, and the current address, respectively:

breaki 0xf0400608
breaki {line 37}
breaki "xyz.c"@37
breaki main
breaki {line}
breaki {pc}

The PGDBG Debugger 29

Similarly,

breaki 0x6480 if(n>3) do {print "n=", n}

stops and prints the new value of n at address 0x6480 only if n is greater than 3.

breaks
Display all the existing breakpoints.

catch
catch [sig:sig]
catch [sig [, sig...]]

With no arguments, print the list of signals being caught. With the : argument, catch the
specified range of signals. With a list, trap signals with the specified number.

clear

clear all

clear func

clear line

clear addr {addr}

Clear all breakpoints at current location. Clear all breakpoints. Clear all breakpoints from first
statement in the specified routine finc. Clear breakpoints from line number /ine. Clear breakpoints
from the address addr.

del[ete] event-number

del[ete] 0

del[ete] all

del[ete] event-number [, event-number-...]

Delete the event event-number or all events (delete 0 is the same as delete all). Multiple event
numbers can be supplied if they are separated by a comma.

disab[le] event-number
disab[le] all

Disable the indicated event event-number, or all events. Disabling an event definition suppresses
actions associated with the event, but leaves the event defined so that it can be used later.

30 Chapter 1

do {commands} [if (condition)]
do {commands} at line [if (condition)]
do {commands} in func [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression,
it defines a list of commands to be executed. Without the optional arguments af or in, the
commands are executed at each line in the program The at argument with a /ine specifies the
commands to be executed each time that line is reached. The in argument with a func specifies the
commands are executed at each line in the routine. The if option has the same meaning as in
watch. If a condition is specified, the do commands are executed only when condition is true.

doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in func [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an
expression, it defines a list of commands to be executed. If an address (addr) is specified, then the
commands are executed each time that the specified address is reached. If a routine (finc) is
specified, then the commands are executed at each line in the routine. If neither is specified, then
the commands are executed at each address in the program. The if option has the same meaning as
in do above.

enab[le] event-number | all

Enable the indicated event event-number, or all events.

hwatch addr [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a
particular address. The event is triggered by hardware when the byte at the given address is
written. This command is only supported on systems that provide the necessary hardware and

software support. Only one hardware watchpoint can be defined at a time.

If an if option is specified, the event will cause no action unless the expression is true. If a do
option is specified, then the commands will be executed when the event occurs.

hwatchr[ead] addr [if (condition)] [do {commands}]
Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given

address is read. As with Awatch, system hardware and software support must exist for this
command to be supported. The if'and do options have the same meaning as for hAwatch.

The PGDBG Debugger 31

hwatchb[oth] addr [if (condition)] [do {commands}]

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the
given address is either read or written. As with Awatch, system hardware and software support
must exist for this command to be supported. The if and do options have the same meaning as for
hwatch.

ignore
ignore[sig:sig]
ignore [sig [, sig...]]

With no arguments, print the list of signals being ignored. With the : argument, ignore the
specified range of signals. With a list, ignore signals with the specified number.

stat[us]
Display all the event definitions, including an event number by which the event can be identified.

stop var

stop at line [if (condition)][do {commands}]
stop in func [if (condition)][do {commands}]
stop if (condition)

Set a breakpoint at the indicated routine or line. Break when the value of the indicated variable var
changes. The at keyword and a number specifies a line number. The in keyword and a routine
name specifies the first statement of the specified routine. With the if keyword, the debugger stops
when the condition condition is true.

stopi var

stopi at address [if (condition)][do {commands}]
stopi in func [if (condition)][do {commands}]
stopi if (condition)

Set a breakpoint at the indicated address or routine. Break when the value of the indicated variable
var changes. The at keyword and a number specifies an address to stop at. The in keyword and
a routine name specifies the first address of the specified routine to stop at. With the if keyword,
the debugger stops when condition is true.

32 Chapter 1

track expression [at line | in func] [if (condition)][do {commands}]

Define a track event. This command is equivalent to watch except that execution resumes after a
new value is printed.

tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an instruction level track event. This command is equivalent to watchi except that
execution resumes after the new value is printed.

trace var [if (condition)][do {commands}]
trace func [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in func [if (condition)][do {commands}|

Activate source line tracing when var changes. Activate source line tracing and trace when in
routine func. With at, activate source line tracing to display the specified line each time it is
executed. With in, activate source line tracing to display the specified each source line when in the
specified routine. If condition is specified, trace is on only if the condition evaluates to true. The
do keyword defines a list of commands to execute at each trace point. Use the command pgienv
speed secs to set the time in seconds between trace points. Use the clear command to remove
tracing for a line or routine.

tracei var [if (condition)][do {commands}]
tracei func [if (condition)][do {commands}]
tracei at addr [if (condition)][do {commands}]
tracei in func [if (condition)][do {commands}]

Activate instruction tracing when var changes. Activate instruction tracing when in routine func.
With at, activate tracing to display the specified line each time it is executed. With the in keyword,
display instructions while in the specified routine. Use the command pgienv speed secs to set the
time in seconds between trace points. Use the clear command to remove tracing for a line or
routine.

unb(reak] line
unb(reak] func

unb(reak] all

Remove a breakpoint from the statement line. Remove a breakpoint from the routine func.
Remove all breakpoints.

The PGDBG Debugger 33

unbreaki addr
unbreaki func
unbreaki all

Remove a breakpoint from the address addr. Remove a breakpoint from the routine func.
Remove all breakpoints.

wa[tch] expression

wa[tch] expression [if (condition)][do {commands}]

wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in func [if (condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of
the expression changes, the program stops and the new value is printed. If a particular line is
specified, the expression is only evaluated at that line. If a routine func is specified, the expression
is evaluated at each line in the routine. If no location is specified, the expression will be evaluated
at each line in the program. If a condition is specified, the expression is evaluated only when the
condition is true. If commands are specified, they are executed whenever the expression is
evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a
routine or address is specified to ensure that the variable will only be evaluated when it is in
scope.

Note: Using watchpoints indiscriminately can dramatically slow program execution.
Using the af and in options speeds up execution by reducing the amount of single-stepping and

expression evaluation that must be performed to watch the expression. For example:

watch i at 40

will barely slow program execution at all, while

watch i

will slow execution considerably.

watchi expression

watchi expression [if(condition)][do {commands} |
watchi expression at addr [if(condition)][do {commands} |
watchi expression in func [if(condition)][do {commands}]

Define an instruction level watch event. This is just like the watch command except that the at
option interprets integers as addresses rather than line numbers, and the expression is evaluated at
every instruction instead of at every line.

34 Chapter 1

This command is useful if line number information is limited. It causes programs to execute more
slowly than watch.

when do {commands} [if (condition)]
when at /ine do {commands} [if (condition)]
when in func do {commands} [if (condition))

Execute command at every line in the program. Execute commands at specified line in the
program. Execute command in the specified routine. If the optional condition is specified,
commands are executed only when the expression evaluates to true.

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in func do {commands} [if (condition)]

Execute commands at each address in the program. If an addr is specified, the commands are
executed each time the address is reached. If a routine func is specified, the commands are
executed at each line in the routine. If the optional condition is specified, commands are executed
whenever the expression is evaluated true.

Events can be parallelized across multiple threads of execution. See Section 1.15.16 Parallel
Events for details.

1.9.1.4 Program Locations

This section describes PGDBG program locations commands.

arri[ve]

Print location information and update GUI markers for the current location.
cd [dir]

Change to the SHOME directory or to the specified directory dir.

dis[asm]

dis[asm] count

dis[asm] lo:hi

dis[asm] func
dis[asm] addr, count

Disassemble memory. If no argument is given, disassemble four instructions starting at the current

The PGDBG Debugger 35

address. If an integer count is given, disassemble count instructions starting at the current address.
If an address range is given, disassemble the memory in the range. If a routine name is given,
disassemble the entire routine. If the routine was compiled for debug, and source code is available,
the source code will be interleaved with the disassembly. If an address and a count are given,
disassemble count instructions starting at address addr.

edit
edit filename
edit func

If no argument is supplied, edit the current file starting at the current location. With a filename
argument, edit the specified file filename. With the func argument, edit the file containing routine
func. This command uses the editor specified by the environment variable SEDITOR.

file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument,
print the current file.

lines routine

Print the lines table for the specified routine.

lis[t]

lis[t] count
lis[t] line,num
lis[t] lo:hi
lis[t] routine

With no argument, list 10 lines centered about the current source line. If a count is given, list
count lines centered about the source line. If a line and count are given, list number lines starting
at line number /ine. For the dbx environment, this option lists lines from start to number. If a line
range is given, list the indicated source lines in the current source file (this option is not valid in
the dbx environment). If a routine name is given, list the source code for the indicated routine.

pwd

Print the current working directory.

stack[trace] [count]

Print a stacktrace. For each live routine print the routine name, source file, line number, current
address. This command also prints the names and values of the arguments, if available. If a count
is specified, display a maximum of count stack frames.

36 Chapter 1

stackd[ump] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for
each live routine. This command is a machine-level version of the stacktrace command. If a count
is specified, display a maximum of count stack frames.

wlhere] [count]

Print the address, routine, source file and line number for the current location. If count is
specified, print a maximum of count live routines on the stack.

/
/ [string] /

Search forward for a string (string) of characters in the current file. With just /, search for the next
occurrence of string in the current file.

?
?string] ?

Search backward for a string (string) of characters in the current file. With just ?, search for the
previous occurrence of string in the current file.

1.9.1.5 Printing and Setting Variables

This section describes PGDBG commands used for printing and setting variables.

plrint] exp! [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each
line of command input. Values are printed in a format appropriate to their type. For values of
structure type, each field name and value is printed. Character pointers are printed as a hex address

followed by character string.

Character string constants print out literally. For example:

pgdbg> print "The value of i is ", 1
The value of i is 37

The PGDBG Debugger 37

The array sub-range operator : prints a range of an array. The following example prints elements 0
through 10 of the array a:

print af[0:10]
printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. Behaves like the C library function
printf. For example:

pgdbg> printf "f[%d]=%G",1i, f[1]
f[3]=3.14

The pgienv command with the stringlen argument sets the maximum number of characters that
will print with a print command. For example, the char declaration below:

char *c="a whole bunch of chars over 1000 chars long....";

A print c command will only print the first 512 (or stringlen) bytes. Normally, the printing
occurs until a NULL is reached, but without some limit, the printing may never end.

asc[ii] exp [,...exp]

Evaluate and print as an ascii character. Control characters are prefixed with the "' character; that
is, .3 prints as “c. Otherwise, values that can not be printed as characters are printed as integer
values prefixed by "\'. for example,. 250 prints as \250.

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in binary.

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display
display exp [,...exp]

Without arguments, list the expressions set to display at breakpoints. With an argument or several
arguments, print expression exp at every breakpoint. See the description for undisplay.

hex exp [,...exp]

Evaluate and print the expressions. Integer values are printed in hex.

38 Chapter 1

oct exp [,...exp]

Evaluate and print the expressions. Integer values are printed in octal.

set var=expression

Set variable var to the value of expression.

str(ing] exp [,...exp]

For each expression, evaluate, treat the result as a character pointer, and fetch and print a null
terminated string from that address. This command will fetch a maximum of 70 characters.

undisplay 0
undisplay all
undisplay exp [,...exp]

Remove all expressions being printed at breakpoints. With an argument or several arguments,
remove the expression exp from the list of display expressions.

1.9.1.6 Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

as[sign] var = exp

Assign the value of the expression exp to the specified variable var.

call func [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered
during execution of the routine are ignored. If a signal is caught during execution of the routine,
execution will stop, but continued execution may produce unpredictable results. Fortran functions
and subroutines can be called, but the argument values will be passed according to C conventions.
PGDBG may not always be able to access the return value of a Fortran function if the return value
is an array.

decl[aration] name

Print the declaration for the symbol, based on the type of the symbol in the symbol table. The

symbol must be a variable, argument, enumeration constant, routine, a structure, union, enum, or a
typedef tag.

The PGDBG Debugger 39

For example, given declarations:
int i, iar[10];
struct abc {int a; char b[4]; struct abc *c;}val;
The commands,

decl I
decl iar
decl val
decl abc

will respectively print out as
int i
int iar[10]
struct abc val

struct abc {
int a;
char b[4];
struct abc *c;
}i

entr[y]
entr[y] func

Return the address of the first executable statement in the program or specified routine. This is the
first address after the routine's prologue code.

Iv[al] expr

Return the /value of the expression expr. The lvalue of an expression is the value it would have if
it appeared on the left hand of an assignment statement. Roughly speaking, an /value is a location
to which a value can be assigned. This may be an address, a stack offset, or a register.

rv[al] expr
Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if

it appeared on the right hand of an assignment statement. The type of the expression may be any
scalar, pointer, structure, or function type.

40 Chapter 1

siz[eof] name
Return the size, in bytes, of the variable type name.

type expr

Return the type of the expression. The expression may contain structure reference operators (.
and ->), dereference (*), and array index ([]) expressions. For example, given declarations
shown previously, the commands:

type I

type iar

type val

type val.a

type val.abc->b[2]
produce the following output:

int

int [10]

struct abc

int

char

whatis
whatis name

With no arguments, print the declaration for the current routine. With argument name, print the
declaration for the symbol name.

1.9.1.7 Scope

The following commands deal with program scope. See Section 1.4.3 Scope Rules for a discussion
of scope meaning and conventions.

decls

decls func

decls "sourcefile"
decls {global}

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the
declarations for global scope.

The PGDBG Debugger 41

down [number]

Enter scope of routine down one level or number levels on the call stack.
en[ter]

en[ter] func

en[ter] "sourcefile"

en[ter] {global}

Set the search scope to be the indicated symbol, which may be a routine, source file or global. If
no scope is specified, use the search scope. The default enter with no argument is enter global.

files
Return the list of the files that make up the object file.
glob[al]

Return a symbol representing global scope. This command can also be used with the scope
operator @ to specify symbols at global scope.

names
names func
names "sourcefile"

names {global}

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the
search scope.

sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each time
program execution stops. It may also be set using the enter command. The search scope is always
searched first for symbols.

up [number]

Enter scope of routine up one level or number levels on the call stack.

whereis name

Print all declarations for name.

42 Chapter 1

which name

Print full scope qualification of symbol name.

1.9.1.8 Register Access

System registers can be accessed by name. See Section 1.4.4 Register Symbols for the complete set
of registers. A few commands exist to access common registers.

fp
Return the current value of the frame pointer.
pe
Return the current program address.
regs [format]
Print a formatted display of the names and values of the integer, float, and double registers. If the
Jformat parameter is omitted, then PGDBG will print all of the registers. Otherwise, regs accepts
the following optional parameters:
e f— Print floats as single precision values (default)
e d— Print floats as double precision values
e x— Add hexadecimal representation of float values
ret[addr]
Return the current return address.
sp

Return the current value of the stack pointer.

The PGDBG Debugger 43

1.9.1.9 Memory Access

The following commands display the contents of arbitrary memory locations.

cr[ead]addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dr[ead]addr

Fetch and return a 64 bit double from the specified address.

du[mp] address, count, "format-string"

This command dumps a region of memory according to a printf-like format descriptor. Starting at
the indicated address, values are fetched from memory and displayed according to the format
descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.
The meaning of the recognized format descriptors is as follows:

%d, %D, %o, %0, %x, %X, %u, 5%U

Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is machine
dependent. The size of the item read can be modified by either inserting 'h', or 'I' before the format
character to indicate half bits or long bits. For example, if your machine’s default size is 32-bit,
then $hd represents a 16-bit quantity. Alternatively, a 1, 2, or 4 after the format character can be

used to specify the number of bytes to read.

scC
Fetch and print a character.

sf, SF, %e, SE, %g, %G
Fetch and print a float (lower case) or double (upper case) value using printf £, e, or g format.

44 Chapter 1

%s

Fetch and print a null terminated string.

$p<format-chars>
Interpret the next object as a pointer to an item specified by the following format characters. The
pointed-to item is fetched and displayed. Examples:

Ipx
pointer to hex int.

%ps
pointer to string.

Spps
pointer to pointer to string.

i

Fetch an instruction and disassemble it.

Sw, SW
Display address about to be dumped.

$z<n>, %72<n>, %z<-n>, %Z<-n>
Display nothing but advance or decrement current address by n bytes.

%a<n>, SA<n>
Display nothing but advance current address as needed to align modulo 7.

fr[ead]addr

Fetch and return a 32-bit float from the specified address.
ir[ead] addr

Fetch and return a signed integer from the specified address.
Ir[ead] addr

Fetch and return an address from the specified address.

The PGDBG Debugger 45

mq[dump]

Dump message queue information for current process. Refer to Section 1.17.3 MPI Message
Queues for more information on mqdump.

sr[ead]addr

Fetch and return a short signed integer from the specified address.

1.9.1.10 Conversions

The commands in this section are useful for converting between different kinds of values. These
commands accept a variety of arguments, and return a value of a particular kind.

Create an address conversion under these conditions:

e Ifan integer is given return an address with the same value.

e Ifaline is given, return the address corresponding to the start of that line.

e Ifaroutine is given, return the first address of the routine.

e Ifavariable or argument is given, return the address where that variable or argument is

stored.

For example:
breaki {line {addr 0x22f0}}

func[tion]
func[tion] addr
func[tion] line

Return a routine symbol. If no argument is specified, return the current routine. If an address is

given, return the routine containing that address. An integer argument is interpreted as an address.
If a line is given, return the routine containing that line.

46 Chapter 1

lin[e]
lin[e] n
lin[e] func
lin[e] addr

Create a source line conversion. If no argument is given, return the current source line. If an
integer 7 is given, return it as a line number. If a routine func is given, return the first line of the
routine. If an address addr is given, return the line containing that address.

For example, the following command returns the line number of the specified address:

line {addr 0x22f0}

1.9.1.11 Miscellaneous

The following commands make using the debugger easier.

al[ias]
al[ias] name
al[ias] name string

Create or print aliases. If no arguments are given print all the currently defined aliases. If justa
name is given, print the alias for that name. If a name and string, are given, make name an alias for
string. Subsequently, whenever name is encountered it will be replaced by string. Although string
may be an arbitrary string, name must not contain any blanks.

For example:

alias xyz print "x= ",x,"y= ",y,"z= ",z; cont
creates an alias for xyz. Now whenever xyz is typed, PGDBG will respond as though the
following command was typed:

print "x= ",x,
dir[ectory] [pathname)]

Add the directory pathname to the search path for source files. If no argument is specified, the
currently defined directories are printed. This command exists so that you can debug programs
even when some or all of the program source files are in a directory other than your current
directory. For example:

dir morestuff

The PGDBG Debugger 47

adds the directory morestuff to the list of directories to be searched. Now, source files stored in
morestuff are accessible to PGDBG.

If the first character in pathname is ~, it will be substituted by SHOME.
help [command]

If no argument is specified, print a brief summary of all the commands. If a command name is
specified, print more detailed information about the use of that command.

history [num]

List the most recently executed commands. With the num argument, resize the history list to hold
num commands. History allows several characters for command substitution:

! [modifier] Execute the previous command

! num [modifier] Execute command number num

l-num [modifier] Execute command -num from the most current
command

Istring [modifier] Execute the most recent command starting with string

1?string? [modifier] Execute the most recent command containing string

A Quick history command substitution

~old"new”<modifier> this is equivalent to !:s/old/new/

The history modifiers may be:
:s/old/new/ Substitute the value new for the value old.

:p Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number.
The command pgienv history on tells the debugger to display the history record number.

language
Print the name of the language of the current file.
log filename

Keep a log of all commands entered by the user and store it in the named file. This command may
be used in conjunction with the script command to record and replay debug sessions.

48 Chapter 1

nop[rint] exp

Evaluate the expression but do not print the result.

pgienv [command]

Define the debugger environment. With no arguments, display the debugger settings.

help pgienv
[pgilenv

pgienv

pgienv dbx on
pgienv dbx off
pgienv history on
pgienv history off
pgieny exe none
pgienv exe symtab
pgienv exe demand

pgienv exe force

pgienv solibs none
pgienv solibs symtab
pgienv solibs demand

pgienv solibs force
pgienv mode serial
pgienv mode thread
pgienv mode process

pgienv mode multilevel

pgienv omp [on|off]

pgienv prompt <name>
pgienv promptlen <num>

pgienv speed <secs>

pgienv stringlen <num>

The PGDBG Debugger

Provide help on pgienv

Define the debugger environment

Display the debugger settings

Set the debugger to use dbx style commands

Set the debugger to use pgi style commands
Display the “history' record number with prompt
Do NOT display the “history' number with prompt
Ignore executable’s symbolic debug information
Digest executable’s native symbol table (typeless)

Digest executable’s symbolic debug information incrementally on
command

Digest executable’s symbolic debug information when executable is
loaded

Ignore symbolic debug information from shared libraries
Digest native symbol table (typeless) from each shared library

Digest symbolic debug information from shared libraries incrementally
on demand

Digest symbolic debug information from each shared library at load time
Single thread of execution (implicit use of p/t-sets)

Debug multiple threads (condensed p/t-set syntax)

Debug multiple processes (condensed p/t-set syntax)

Debug multiple processes and multiple threads

Enable/Disable the PGDBG OpenMP event handler. This option is
disabled by default. The PGDBG OpenMP event handler, when enabled,
sets breakpoints at the beginning and end of each parallel region.
Breakpoints are also set at each thread synchronization point. The handler
coordinates threads across parallel constructs to maintain source level
debugging. This option, when enabled, may significantly slow down
program performance. Enabling this option is recommended for localized
debugging of a particular parallel region only.

Set the command line prompt to <name>

Set maximum size of p/t-set portion of prompt

Set the time in seconds <secs> between trace points
Set the maximum # of chars printed for "char *'s

49

50

pgienv logfile <name>
pgieny threadstop sync
pgieny threadstop async
pgienv procstop sync
pgieny procstop async

pgienv threadstopconfig
auto

pgieny threadstopconfig
user

pgienvy procstopconfig
auto

pgienvy procstopconfig
user

pgieny threadwait none
pgieny threadwait any
pgieny threadwait all
pgieny procwait none
pgieny procwait any
pgieny procwait all

pgieny threadwaitconfig
auto

pgieny threadwaitconfig
user

pgienv verbose <bitmask>

Close logfile (if any) and open new logfile <name>

When one thread stops, the rest are halted in place

Threads stop independently (asynchronously)

When one process stops, the rest are halted in place

Processes stop independently (asynchronously)

For each process, debugger sets thread stopping mode to 'sync' in serial
regions, and 'async' in parallel regions

Thread stopping mode is user defined and remains unchanged by the
debugger.

Not currently used.

Process stop mode is user defined and remains unchanged by the
debugger.

Prompt available immediately; no wait for running threads
Prompt available when at least a single thread stops

Prompt available only after all threads have stopped

Prompt available immediately; no wait for running processes
Prompt available when at least a single process stops
Prompt available only after all processes have stopped

For each process, the debugger will set the thread wait mode to ‘all’ in
serial regions and ‘none’ in parallel regions. (default)

The thread wait mode is user defined and will remain unchanged by the
debugger.

Choose which debug status messages to report. Accepts an integer valued
bit mask of the following values:

o 0x1 - Standard messaging (default). Report status information
on current process/thread only.

o 0x2 - Thread messaging. Report status information on all
threads of (current) processes.

o 0x4 - Process messaging. Report status information on all
processes.

o 0x8 - SMP messaging (default). Report SMP events.
o 0x10 - Parallel messaging (default). Report parallel events.

o 0x20 - Symbolic debug information. Report any errors
encountered while processing symbolic debug information
(e.g. STABS, DWAREF). Pass 0x0 to disable all messages.

o Pass 0x0 to disable all messages.

Chapter 1

rep[eat] [first, last]
[eat] [first,:last:n]

rep[eat] [num]

rep[eat] [-num |

Repeat the execution of one or more previous history list commands. With the num argument,
re-execute the command number num, or with -num, the last num commands. With the first and
last arguments, re-execute commands number first to last (optionally n times).

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. If you
use ~ before the filename, this is expanded to the value of $HOME.

setenv name
setenv name value

Print value of environment variable name. With a specified value, set name to value.
shell [arg0, argl,... argn]

Fork a shell (defined by $sHELL) and give it the indicated arguments (the default shell is sh). If no
arguments are specified, an interactive shell is invoked, and executes until a "*D" is entered.

sle[ep] [time]
Pause for time seconds or one second if no time is specified.
sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. If you
use ~ before the filename, this is expanded to the value of $SHOME.

unal[ias] name
Remove the alias definition for name, if one exists.
use [dir]

Print the current list of directories or add dir to the list of directories to search. If the first character
in pathname is ~, it will be substituted by $HOME.

The PGDBG Debugger 51

1.10 Commands Summary

This section contains a brief summary of the PGDBG debugger commands. For more detailed
information on a command, see the section number associated with the command. If you are
viewing an online version of this manual, select the hyperlink under the selection category to jump
to that section in the manual.

Table 1-2: PGDBG Commands

Name Arguments Section
arri[ve] 1.9.1.4 Program Locations
att[ach] <pid> [<exe>]| [<exe> <host>] 1.9.1.1 Process Control
ad[dr] [n|line| func|var|arg] 1.9.1.10 Conversions
al[ias] [name [string 1] 1.9.1.11 Miscellaneous
ascl[ii] exp [,...exp] 1.9.1.5 Printing and Setting
Variables
as[sign] var=exp 1.9.1.6 Symbols and
Expressions
bin exp [,...exp] 1.9.1.5 Printing and Setting
Variables
b[reak] [line | func] [if (condition)] [do 1.9.1.3 Events
{commands}]
breaki [addr | func] [if (condition)] [do 1.9.1.3 Events
{commands}]
breaks 1.9.1.3 Events
call func [(exp,...)] 1.9.1.6 Symbols and
Expressions
catch [number [,number-...]] 1.9.1.3 Events

52 Chapter 1

Name

cd

clear
c[ont]
cr[ead]
de[bug]

dec

decl[aration]

decls

delfete]

det[ach
dir[ectory]
dis[asm]
disab[le]

display

do

doi

down

Arguments
[dir]

[all | func | line| addr {addr} |

addr

exp [,...exp]

name

[func | "sourcefile" | {global}]

event-number | all | 0 | event-number [,.event-

number. |

[pathname)
[count | lo:hi | func | addr, count]

event-number | all

exp [,...exp]
{commands} [at line | in func] [if
(condition)]

{commands} [at addr | in func] [if
(condition)]

The PGDBG Debugger

Section

1.9.1.4 Program Locations
1.9.1.3 Events

1.9.1.1 Process Control
1.9.1.9 Memory Access
1.9.1.1 Process Control

1.9.1.5 Printing and Setting
Variables

1.9.1.6 Symbols and
Expressions

1.9.1.7 Scope

1.9.1.3 Events

1.9.1.1 Process Control
1.9.1.11 Miscellaneous
1.9.1.4 Program Locations
1.9.1.3 Events

1.9.1.5 Printing and Setting
Variables

1.9.1.3 Events

1.9.1.3 Events

1.9.1.7 Scope

53

54

Name

defset
dr[ead]
du[mp]
edit
enabl[le]
en[ter]

entr[y]

fille]

files
focus

fp

fr[ead]
func[tion]

glob[al]

halt

he[lp]

hex

hi[story]

Arguments

name [p/t-set]

addr

address, count, "format-string"

[filename | func]
event-number | all

func | "sourcefile" | {global}

func

[p/t-set]

addr

[addr | line]

[command]

exp [,...exp]

[num]

Section

1.9.1.2 Process-Thread Sets
1.9.1.9 Memory Access
1.9.1.9 Memory Access
1.9.1.4 Program Locations
1.9.1.3 Events

1.9.1.7 Scope

1.9.1.6 Symbols and
Expressions

1.9.1.4 Program Locations
1.9.1.7 Scope

1.9.1.2 Process-Thread Sets
1.9.1.8 Register Access
1.9.1.9 Memory Access
1.9.1.10 Conversions

1.15.10.3 Global
Commands

1.9.1.1 Process Control
1.9.1.11 Miscellaneous

1.9.1.5 Printing and Setting
Variables

1.9.1.11 Miscellaneous

Chapter 1

Name Arguments

hwatch addr [if (condition)] [do {commands}]
hwatchb[oth] addr [if (condition)] [do {commands}]

hwatchr[ead] addr [if (condition)] [do {commands}]

ignore [number [,number...]]

ir[ead] addr

language

lin[e] [n | func | addr]

lines routine

lis[t] [count | line,count | lo:hi | routine]
log filename

lv[al] exp

mq[dump]

names [func | "sourcefile" | {global}]
nfext] [count]

nexti [count]

nop[rint] exp

oct exp [,...exp]

pc

pgienv [command]

The PGDBG Debugger

Section

1.9.1.3 Events

1.9.1.3 Events

1.9.1.3 Events

1.9.1.3 Events

1.9.1.9 Memory Access
1.9.1.11 Miscellaneous
1.9.1.10 Conversions
1.9.1.4 Program Locations
1.9.1.4 Program Locations
1.9.1.11 Miscellaneous

1.9.1.6 Symbols and
Expressions

1.9.1.9 Memory Access
1.9.1.7 Scope

1.9.1.1 Process Control
1.9.1.1 Process Control
1.9.1.11 Miscellaneous

1.9.1.5 Printing and Setting
Variables

1.9.1.8 Register Access

1.9.1.11 Miscellaneous

55

56

Name

p[rint]

printf

proc
procs
pwd
q[uit]
regs
rep[eat]

rer[un]

ret[addr]

ru[n]

rv[al]

sco[pe]
scr[ipt]

set

setenv

sh[ell]

Arguments

expl [,...expn]

"format string", expr,...expr

[number]

[first, last] | [first: last:n] | [num] | [-num]

[arg0 argl ... argn] [< inputfile] [>
outputfile]

[arg0 argl ... argn] [< inputfile] [>
outputfile]

expr

filename

var = ep

name | name value

arg0 [... argn)

Section

1.9.1.5 Printing and Setting
Variables

1.9.1.5 Printing and Setting
Variables

1.9.1.1 Process Control
1.9.1.1 Process Control
1.9.1.4 Program Locations
1.9.1.1 Process Control
1.9.1.8 Register Access
1.9.1.11 Miscellaneous

1.9.1.1 Process Control

1.9.1.8 Register Access
1.9.1.1 Process Control
1.9.1.6 Symbols and
Expressions

1.9.1.7 Scope

1.9.1.11 Miscellaneous

1.9.1.6 Symbols and
Expressions

1.9.1.11 Miscellaneous

1.9.1.11 Miscellaneous

Chapter 1

Name

siz[eof]

sle[ep]
source

Sp

sr[ead]
stackd[ump]
stack[trace]
stat[us]
s[tep]

stepi
stepol[ut]

stop

stopi

sync
synci

str[ing]

thread

threads

Arguments

name

time

filename

addr
[count]

[count]

[count] [up]

[count] [up]

[at line | in_func] [var] [if (condition)]
[do {commands}]

[at addr | in func] [var] [if (condition)]
[do {commands}]

[func | line]
[func | addr]

exp [,...exp]

number

The PGDBG Debugger

Section

1.9.1.6 Symbols and
Expressions

1.9.1.11 Miscellaneous
1.9.1.11 Miscellaneous
1.9.1.8 Register Access
1.9.1.9 Memory Access
1.9.1.4 Program Locations
1.9.1.4 Program Locations
1.9.1.3 Events

1.9.1.1 Process Control
1.9.1.1 Process Control
1.9.1.1 Process Control

1.9.1.3 Events

1.9.1.3 Events

1.9.1.1 Process Control
1.9.1.1 Process Control

1.9.1.5 Printing and Setting
Variables

1.9.1.1 Process Control

1.9.1.1 Process Control

57

58

Name

track

tracki

trace

tracel

type

unal[ias]
undefset

undisplay

unb[reak]
unbreaki
up

use
viewset
wait

wa][tch]

watchi

Arguments

expression [at line | in func] [if (condition)]
[do {commands}]

expression [at addr | in func] [if (condition))
[do {commands}]

[at line | in func] [var| func] [if (condition)]
do {commands}

[at addr | in func] [var] [if (condition)]
do {commands}

expr

name
[name | -all]

[all|O]exp]

line | func | all

addr | func | all

[dir]
name
[any | all | none]

expression [at line | in func] [if (condition)]
[do {commands}]

expression [at addr | in func] [if(condition)]
[do {commands}]

Section

1.9.1.3 Events

1.9.1.3 Events

1.9.1.3 Events

1.9.1.3 Events

1.9.1.6 Symbols and

Expressions

1.9.1.11 Miscellaneous

1.9.1.2 Process-Thread Sets

1.9.1.5 Printing and Setting
Variables

1.9.1.3 Events

1.9.1.3 Events

1.9.1.7 Scope

1.9.1.11 Miscellaneous
1.9.1.2 Process-Thread Sets
1.9.1.1 Process Control

1.9.1.3 Events

1.9.1.3 Events

Chapter 1

Name Arguments Section

whatis [name] 1.9.1.6 Symbols and
Expressions

when [at line | in _func] [if (condition)] do 1.9.1.3 Events
{commands}

wheni [at addr | in func] [if(condition)] do 1.9.1.3 Events
{commands}

wlhere] [count] 1.9.1.4 Program Locations

whereis name 1.9.1.7 Scope

whichsets [p/t-set] 1.9.1.2 Process-Thread Sets

which name 1.9.1.7 Scope

/ [[string]/ 1.9.1.4 Program Locations

? ?[string] ? 1.9.1.4 Program Locations

! History modification 1.9.1.11 Miscellaneous

A History modification 1.9.1.11 Miscellaneous

1.11 Register Symbols

This section describes the register symbols defined for X86 processors, and AMD64 processors
operating in compatibility or legacy mode.

1.11.1 X86 Register Symbols

This section describes the X86 register symbols.

The PGDBG Debugger

60

Table 1-3: General Registers

Name Type Description
$edi unsigned General purpose
$esi unsigned General purpose
$eax unsigned General purpose
$ebx unsigned General purpose
$ecx unsigned General purpose
$edx unsigned General purpose

Table 1-4: x87 Floating-Point Stack Registers

Description

$d0 - $d7 80-bit IEEE Floating-point
Table 1-5: Segment Registers
Name Type Description
$gs 16-bit unsigned | Segment register
$fs 16-bit unsigned | Segment register
Ses 16-bit unsigned | Segment register
$ds 16-bit unsigned | Segment register
$ss 16-bit unsigned | Segment register
Scs 16-bit unsigned | Segment register

Chapter 1

Table 1-6: Special Purpose Registers

Name Type Description

Sebp 32-bit unsigned | Frame pointer

Sefl 32-bit unsigned | Flags register

Seip 32-bit unsigned | Instruction pointer

Sesp 32-bit unsigned | Privileged-mode stack pointer
Suesp 32-bit unsigned | User-mode stack pointer

1.11.2 AMD64 Register Symbols

This section describes the register symbols defined for AMD64 processors operating in 64-bit
mode.

Table 1-7: General Registers

Name ‘ Type Description
$r8 - S$rilb5 64-bit unsigned General purpose
Srdi 64-bit unsigned General purpose
Srsi 64-bit unsigned General purpose
Srax 64-bit unsigned General purpose
Srbx 64-bit unsigned General purpose
Srcx 64-bit unsigned General purpose
Srdx 64-bit unsigned General purpose

Table 1-8: Floating-Point Registers

Description

$d0 - $d7 |80-bit IEEE Floating-point

The PGDBG Debugger

61

Table 1-9: Segment Registers

Name Type Description
$Sgs 16-bit unsigned Segment register
Sfs 16-bit unsigned Segment register
Ses 16-bit unsigned Segment register
Sds 16-bit unsigned Segment register
$Sss 16-bit unsigned Segment register
Scs 16-bit unsigned Segment register

Table 1-10: Special Purpose Registers

Description
Sebp 64-bit unsigned Frame pointer
Srip 64-bit unsigned Instruction pointer
Srsp 64-bit unsigned Stack pointer
Seflags 64-bit unsigned Flags register

Table 1-11: SSE Registers

Description
Smxcsr 64-bit unsigned SIMD floating-point
control
SxmmO - S$xmmlb Packed 4x32-bit IEEE SSE floating-point
Packed 2x64-bit IEEE registers

1.11.3 SSE Register Symbols

On AMDG64, Pentium III, and compatible processors, an additional set of SSE (streaming SIMD
enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register contains four IEEE 754 compliant 32-bit single-precision floating-point values.
The PGDBG regs command reports these values individually in both hexadecimal and floating-
point format. PGDBG provides syntax to refer to these values individually, as members of a range,
or all together.

62 Chapter 1

The component values of each SSE register can be accessed using the same syntax that is used for

array subscripting. Pictorially, the SSE registers can be thought of as follows:

Bits: 127 96 95 65 63 32 31
$xmm0 (3) $xmm0 (2) $xmm0 (1) $xmm0 (0)
$xmml (3) $xmml (2) $xmml (1) $xmml (0)
Sxmm7 (3) Sxmm7 (2) Sxmm7 (1) $xmm7 (0)

To access a $xmm0 (3), the 32-bit single-precision floating point value that occupies bits 96 — 127
of SSE register 0, use the following PGDBG command:

pgdbg> print $xmmO (3)

To set $xmm2 (0) to the value of $xmm3 (2), use the following PGDBG command:

pgdbg> set $xmm2 (3) = $Sxmm3(2)

You can also subscript SSE registers with range expressions to specify runs of consecutive
component values, and access an SSE register as a whole. For example, the following are legal
PGDBG commands:

pgdbg> set $xmm0 (0:1) = S$xmml (2:3)
pgdbg> set $xmm6 = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmm0 to the values in elements 2 and 3
respectively in $xmm1. The second command above initializes all four elements of $xmm6 to the
constant 1.0/3.0 evaluated as a 32-bit floating-point constant.

In most cases, PGDBG detects when the target environment supports the SSE registers. In the
linux86 environment, set the PGDBG _SSE environment variable to “on’ to enable SSE support.

1.12 PGDBG Graphical User Interface

The PGDBG Graphical User Interface (GUI) is invoked on UNIX systems by default using the
command pgdbg. The GUI runs as a separate process and communicates with pgdlbg. There may
be minor variations in the GUI from host to host, depending on the type of monitor available, the
settings for various defaults and the window manager used. The basic interface across all systems
remains the same with the exception of the differences tied to the display characteristics and the
window manager used.

The PGDBG Debugger 63

1.12.1 Main Window

Figure 1-1 shows the main window of PGDBG when you start the GUI for the first time. This
window appears when PGDBG starts and remains throughout the debug session. The initial size of
the main window is approximately 800 x 600. It can be resized in whatever fashion that your
window manager supports. After resizing the main window, the GUI will remember the size that
you choose the next time you bring up PGDBG. If you do not wish to save these settings when
you exit PGDBG, then uncheck the Save Settings on Exit item under the Settings menu. We will
discuss the Settings menu in Section 1.12.1.5 Main Window Menus.

Figure 1-1: Default Appearance of PGDBG GUI

(| PGDBG - The Portland Group Compiler Technology x
File Settings Help

Process 0
@ @ p| 2 T'" 2T O
Run | Hah | Cont MNext | Step | Stepo Mexti| Stepi| Back

Data MWindow Control Optiens |omp.c™

Line Mo. | Ewvent | PC | jhomejsw/demos;TOOLS_DEMO/OMF fomp.c
#Finclude <stdio.he

maingyd
printf("0ne thread ... %n"J;
#pragma omp parallel

{
int myid,i;

[I I Iy [O I S)

myid = amp_get_thread_numi);

for(i=05i<2;i++){
printf{"HELLD ¥d, ¥dwn",oetpid), onp_get_thread_num}l;
L

¥

printf{"... hack to one thread.»n"J;

4]

Loaded: fhome/sw/demos/TOOLE_DEMO/ OMPfomp-g
T T

64 Chapter 1

There are three horizontal divider bars (denoted with up and down arrow icons) at the top of the
GUI in Figure 1-1. These dividers hide the following optional control panels: Command Prompt,
Focus Panel, and the Process/Thread Grid. Figure 1-3 shows the main window with these
controls visible. The GUI will remember which control panels are visible when you exit and will
redisplay them when you reopen PGDBG. Below the dividers is the Source Panel described in
Section 1.12.2 Source Panel.

Besides the main window, a separate Program 1/O window, similar to the one in Figure 1-2, is
displayed when you first start up PGDBG. Any input or output performed by the debuggee is
entered and/or displayed in this window.

Figure 1-2: PGDBG Program 1/0O Window

PGDBG Program 1/O

GOBG 5,2-1 =86 (Workstation, 4 CPUY
opyright 1983-2000, The Portland Group. Inc, All Rights Reserwed,
opyright 2000-2004, STHicroelectronics, Inc, All Rights Reserwed,

The PGDBG Debugger 65

66

Stopped af line 11 (address 0x804973e) in file fhome/swidemos/TOOLS_DEMO/OMPfomp.c
!

Figure 1-3: PGDBG GUI with All Control Panels Visible

File Settings Help
ommand Prompt

-
podhg> Stopped at Ox8049720, function main, file omp.c, line 7 H
#7: #pragma omp parallel

podbg> €[1] Mew Thread)
[@] Stopped at Ox804973e, Tunction main, Tile omp.c, 1ine 11
#11: myid = omp_get_thread_num(d;

podhg [&11] O

—
Focus
I Name | pit-set |
[al =1
Add| Modify] Remove|
avw
All Threads
Eipy |
= U=
[»]

Thread Grid

-

Thread O

ThreadOv Data Window Control Options ompc'|

Line Mo. | Ewent | PC [jhomefsw/dermos/TO0LS_DEMOJOMP jomp.c
H
3 maingi{
4
5 C printt("0One thread ... “n"J:
6
7 #pragma omp parallel
8
9 int mwid,i;
10
11 } myid = omp_get_thread_numid:
12
13 Tor(i=0;i<2:i4++1{
14 printT{"HELLD %d, %odwn",getpid(),omp_get_thread_numil);
15 ¥
16
17 i
18

back To one thread.wn"J;

|#0 main 1ine: 11 in "omp.c" address: Ox804973e '“%{ |Source

Chapter 1

The components of the main window (as seen in Figure 1-3) are:
o Command Prompt

e Focus Panel

e Process/Thread Grid

e Source Panel

1.12.1.1 Command Prompt

The Command Prompt supports a dialog with the debugger. Commands entered in this window
are executed, and the results are displayed. See Section 1.10 Commands Summary for a list of
commands that you can enter in the command prompt. The GUI also supports a “free floating”
version of this window. To use the “free floating” command prompt, select the Command Window
check box under the Window menu (Section 1.12.2.1 Source Panel Menus). If you are going to
only use GUI controls, then you can keep this panel hidden.

1.12.1.2 Focus Panel

The Focus Panel is used to specify subsets of processes and/or threads known as focus groups.
Focus groups allow you to apply debugger commands to a subset of threads and/or processes.
Focus Groups are displayed in the table labeled Focus (Figure 1-3). In Figure 1-3, the Focus table
contains one focus group called A/l that represents all processes/threads. We will revisit focus
groups in Section 1.15.6 P/t-set NotationProcess/Thread Sets. In the meantime, just keep in mind
that you can select a focus group by left mouse clicking on the desired group in the Focus table.
The selected group is known as the Current Focus. By default, the Current Focus is set to all
processes/threads. If you are debugging serial programs, then you can keep this panel hidden.

1.12.1.3 Process/Thread Grid

The PGDBG GUI lists all active processes/threads in the Process/Thread Grid. If you are
debugging a multiprocess application, then this control is known as the Process Grid. If you are
debugging a multithreaded (and single process) application, then the grid is known as a Thread
Grid. Colors of each element in the grid represent a state. These colors and their meaning are
defined in Tables 1-12 and 1-13 (located in Section 1.14.3 Graphical Features).

For the Process Grid, each element is labeled with a numeric process identifier (see Section 1.15.3
Process-only debugging) and represents a single process. Each element is a button that can be
pushed to select a particular process as the Current Process. The Current Process is highlighted
with a black border.

The PGDBG Debugger 67

If you are debugging a multithreaded (e.g., OpenMP, etc.) program, then this control is called a
Thread Grid. Each element in the thread grid is labeled with a numeric thread identifier (see
Section 1.15.2 Threads-only debugging). Similar to processes, clicking on an element in the
thread grid selects that element as the Current Thread. The Current Thread is highlighted with a
black border.

If you are debugging a multiprocess/multithreaded (hybrid) program, then selecting a process in
the grid will reveal an inner thread grid as shown in Figure 1-4. In Figure 1-4, process 0 has four
threads labeled 0.0, 0.1, 0.2, and 0.3; where the integer to the left of the decimal is the process
identifier and the integer to the right of the decimal is the thread identifier. See Section 1.15.4
Multilevel debugging for more information on processes/thread identifiers.

For a text dump of the Process/Thread grid, select the Summary tab under the grid. The text dump
is essentially a graphical version of the threads debugger command (see Section 1.9.1
CommandsProcess Control). When debugging a multiprocess or multithreaded application, the
Summary panel will also include a Context Selector (as described in Section 1.12.3 Subwindows).
Use the Context Selector to view a summary on a subset of processes/threads. By default, you will
see a summary of all the processes/threads.

Use the slider to the right of the grid to zoom in and out of the grid. Currently, the grid supports
up to 1024 elements. If you are debugging serial programs, then you can keep the Process/Thread
Grid hidden.

1.12.1.4 Source Panel

The Source Panel displays the source code for the current location. The current location is marked
by an arrow icon under the PC column. Breakpoints may be set at any source line by clicking the
left mouse button under the Event column of the source line. The breakpoints are marked by stop
sign icons. An existing breakpoint may be cleared by clicking the left mouse button on the stop
sign icon. The source panel is described in greater detail in Section 1.12.2 Source Panel.

68 Chapter 1

Figure 1-4: Process Grid with Inner Thread Grid

| PGDBG - The Portland Group Compiler Technology
File Settings

Help

ommand Prompt

#17: #pragma omp parallel

podbg [a11] ©= {[0.1] Mew Thread)

([D.2] New Thread)

([©.3] New Thread)

[0.0] Stopped at OxE04ad3d, function main, file ompmpi.c, 1ine 20
H200: For{i=0;i<3;i+o{

All Processes

4 | »

| Process Grid |

-

Process O Thread @

-
|F‘rocess.Thread 0.0 v| Data Window Contrel Optiens |ompmpic v|
Line Mo. | Ewent | PC | fhomejsw/demos/TOOLS_DEMO/OMPMPIfompmpi.c
8 int myrank,threadrank; - |
=] char hname[32];
10 int i;
11
1z @ WPI_Init(&argc, &argy 3;
13
14 gethostname Chname, 323
15 MPI_Comm_rank{MPI_COMM_WORLD, &myrankl ;
16
17 #pragna omp parallel
15 {
19 int i;
20 3 for{i=0;i<3;i+04
21 printt(sk ¥dwn" hname, myrank, onp_get_thread_num{3);
22 3
23 #pragna omp barrier
24
25
26 MPI_Finalize();
27
28 return;
29
30 TA%main® s

[E

#0 main Tine: 20 in "ompmpi.c" address: Ox804ad3d hd }%{ |Source

Stopped at line 20 (address Ox804ad3d) in file fhomefswidemos!TOOLS_DEMO/OMPMPL ompmpi.c
!

The PGDBG Debugger

69

1.12.1.5 Main Window Menus

The main window includes three menus located at the top of the window: File, Settings, and Help.
Below is a summary of each menu in the main window.

e File Menu

o

o

Open Debugee... - Select this option to begin a new debugging session. After selecting
this option, select the program to debug (the debugee) from the file chooser dialog. The
current debuggee is closed and replaced with the debugee that you selected from the file
chooser. Press the Cancel button in the file chooser to abort the operation. Also see the
debug command in Section 1.9.1.1 Process Control.

Attach to Debugee... - Select this option to attach to a running process. You can attach to
a debugee running on a local or a remote host. See also the attach command in Section
1.9.1.1 Process Control.

Detach Debugee — Select this option to end the current debug session. See also the
detach command in Section 1.9.1.1 Process Control.

Exit — End the current debug session and close all the windows.

e Settings Menu

o

70

Font... - This option displays the font chooser dialog box. Use this dialog box to select
the font and its size used in the Command Prompt, Focus Panel, and Source Panel. The
default font is called monospace and the default size is 12.

Show Tool Tips — Select this check box to enable tool tips. Tool tips are small temporary
messages that pop-up when you position the mouse pointer over a component in the GUI.
They provide additional information on what a particular component does. Unselect this
check box to turn them off.

Restore Factory Settings — Select this option to restore the GUI back to its initial state as
shown in Figure 1-1.

Restore Saved Settings — Select this option to restore the GUI back to the state that it was
in at the start of the debug session.

Save Settings on Exit — By default, the GUI will remember the state it was in when you
exit. Unselect this check box if you do not want the GUI to remember state. You must
unselect this option every time that you want the GUI to not remember state. When the
GUI saves state, it stores the size of the main window, the location of the main window
on your desktop, the location of each control panel divider, your tool tips preference, the
font and size used. The GUI state is not shared across host machines.

Chapter 1

e Help Menu

o PGDBG Help... - This option starts up PGDBG'’s integrated help utility as shown in

Figure 1-5. The help utility includes a summary of every PGDBG command. To find a

command, use one of the following tabs in the left panel: The “book” tab presents a table

of contents, the “index” tab presents an index of commands, and the “magnifying glass”
tab presents a search engine. Each help page (displayed on the right) may contain

hyperlinks (denoted in underlined blue) to terms referenced elsewhere in the help engine.

Use the arrow buttons to navigate between visited pages. Use the printer buttons to print
the current help page.

o About PGDBG...

- This option displays a dialog box with version and copyright

information on PGDBG. It also contains sales and support points of contact.

JIRAED =S

Figure 1-5: PGDBG Help Utility

PGDEG Help

(O

- .

= PLDEG Help

@ [Process Control

G-] Process/Thread Sets
&] Ewvents

&] Program Locations
& 7 Printing

@ [Symbols and Expressio
@ [scope

& [Register Arcass

@ [Mermony Access

@~] Conversions

@] Miscellaneous

|PGDBG Help

Cormrmands are broken up into the following list of topics:

& Process Control

Process|Thread Sets
& Evernts

Program Locations
Frinting

& Symbols and Expressions
& Scope

& Register Access

Memory AcCcess

& COnversions

& Miscellaneous

| Unless otherwise noted, the user can assume that every

| command listed here can be executed through the cormrmand
il prompt. Instructions for executing an equivalent set of

o| corrnands in the Graphical User Interface (GUI) are also
i|included if they are available.

The PGDBG Debugger

71

1.12.2 Source Panel

As mentioned in Section 1.12.1.4 Source Panel, the source panel is located at the bottom of the
GUI; below the Command Prompt, Focus Panel, and Process/Thread Grid. Use the source panel
to control the debug session, step through source files and set breakpoints. To describe the source
panel, we will divide each component into the following categories: Menus, Buttons, Combo
Boxes, Messages, and Events.

1.12.2.1 Source Panel Menus

The source panel contains the following four menus: Data, Window, Control, and Options. A
keystroke (e.g., Control P) enclosed in parentheses indicates a keyboard short cut for that menu
option.

e Data Menu — The items under this menu are enabled when you select data in the source
panel. Selecting and printing data in the source panel is explained in detail in Section 1.12.1.4
Source Panel. See also Section 1.9.1.5 Printing and Setting Variables.

o Print — Print the value of the selected item. (Control P).

o Print * - Dereference and print the value of the selected item.
o String — Treat the selected value as a string and print its value.
o Bin — Print the binary value of the selected item.

o Oct — Print the octal value of the selected item.

o Hex — Print the hex value of the selected item.

o Dec — Print the decimal value of the selected item.

o Ascii — Print the ASCII value of the selected item.
o Addr — Print the address of the selected item.

e Window Menu — The items under this menu select various subwindows associated with the
debugee. Subwindows are explained in greater detail in Section 1.12.3 Subwindows.

o Registers — Display the registers subwindow. See also the regs command in Section
1.9.1.8 Register Access.

o Stack — Display the stack subwindow. See also the Stack command in Section 1.9.1.4
Program Locations.

72 Chapter 1

o Locals — Display a list of local variables that are currently in scope. See also the names
command in Section 1.9.1.7 Scope.

o Custom — Bring up a custom subwindow.
o Disassembler — Bring up the PGDBG Disassembler subwindow.
o Memory — Bring up the memory dumper subwindow.

0 Messages — Display the MPI message queues. See Section 1.17.3 MPI Message Queues
for more information on MPI message queues.

o Events — Display a list of currently active break points, watch points, etc.

o Command Window — When you select this menu item’s check box, the GUI will display a
“free floating” version of the command prompt window (Section 1.12.1 Command
Prompt). See also Section 1.10 Commands Summary for a description of each command
that you can enter in the command prompt.

e Control Menu — The items under this menu control the execution of the debugee. Many of
the items under this menu have a corresponding button associated with them (see Section
1.12.2.2 Source Panel Buttons).

o Arrive — Return the source pane to the current PC location. See also the arrive command
in Section 1.9.1.4 Program Locations (Control A).

o Up — Enter scope of routine up one level in the call stack. See also the up command in
Section 1.9.1.7 Scope (Control U).

o Down — Enter scope of routine down one level in the call stack. See also the down
command in Section 1.9.1.7 Scope (Control D).

o Run - Run or Rerun the Debugee. See also the run and rerun commands in Section
1.9.1.1 Process Control (Control R).

o Run Arguments - Opens a dialog box that allows you to add or modify the debugee’s
runtime arguments.

o Halt — Halt the running processes or threads. See also the halt command in Section
1.9.1.1 Process Control (Control H).

o Call... - Open a dialog box to request a routine to call. See Section 1.9.1.6 Symbols and
Expressions for more information on the call command.

o Cont — Continue execution from the current location. See also the cont command in
Section 1.9.1.1 Process Control (Control G).

The PGDBG Debugger 73

74

o Step — Continue and stop after executing one source line. See also the step command in
Section 1.9.1.1 Process Control (Control S).

o Next— This command is similar to Step except it steps over called routines. See also the
next command in Section 1.9.1.1 Process Control (Control N).

o Step Out — Continue and stop after returning to the caller of the current routine. See also
the stepout command in Section 1.9.1.1 Process Control (Control O).

o Stepi — Continue and stop after executing one machine instruction. See also the stepi
command in Section 1.9.1.1 Process Control (Control I).

o Nexti — This command is similar to Stepi except it steps over called routines. See also the
nexti command in Section 1.9.1.1 Process Control (Control T).

Options Menu — This menu contains additional items that assist in the debug process.

o Search Forward... - Select this option to perform a forward keyword search in the source
panel (Control F).

o Search Backward... - Select this option to perform a backward keyword search in the
source panel (Control B).

o Search Again... - Select this option to repeat the last keyword search that was performed
on the source panel (Control E).

o Locate Routine... - When you select this option, the GUI will ask you to enter the name
of the routine that you wish to find. If PGDBG has debug information on that routine, it
will display the routine in the source panel. See also Section 1.12.4 Selecting and
Printing Data.

o Disassemble — Disassemble the data selected in the source panel. See also Section 1.12.4
Selecting and Printing Data.

o Cascade Windows — If you have one or more subwindows open, then you can use this
option to automatically stack your subwindows in the upper left-hand corner of your
desktop (Control W).

o Refresh — Repaint the process/thread grid and source panels (Control L).

Chapter 1

1.12.2.2 Source Panel Buttons
There are nine buttons located above the source panel’s menus. Below is a summary of each
button.
e Run — Same as the Run item under the Control menu.
e Halt — Same as the Halt item under the Control menu.
e (Cont— Same as the Cont item under the Control menu.
e Next— Same as the Next item under the Control menu.
e Step — Same as the Step item under the Control/ menu.
e Stepo — Same as the Step Out item under the Control menu.
e Nexti — Same as the Nexti item under the Control menu.
e Stepi — Same as the Stepi item under the Control menu.

® Back - Reset the source panel view to the current PC location (denoted by the left arrow
icon under the PC column).

1.12.2.3 Source Panel Combo Boxes

Besides buttons and menus, the source panel also contains one or more combo boxes. A combo
box is a combination text field and list component. In its closed or default state, it presents a text
field of information with a small down arrow icon to its right. When the down arrow icon is left
mouse clicked, the box opens and presents a list of choices for you to select.

The source panel, as shown in Figure 1-3, contains five combo boxes labeled All, Thread 0,
omp.c, #0 main line: 11 in “omp.c” address: 0x804973e, and Source. These combo boxes are
called the Apply Selector, Context Selector, Source File Selector, Scope Selector, and Display
Mode Selector respectively. Below is a description of each combo box.

o Use the Apply Selector to select the set of processes and/or threads on which you wish to
operate. Any command that you enter in the source panel will be applied to this set of
processes/threads. These commands include setting break points, selecting items under the
Control menu, pressing one of the nine buttons mentioned in Section 1.12.2.2 Buttons, etc.
Depending on whether you are debugging a multithreaded, multiprocess, or
multiprocess/multithreaded (hybrid) program the following possibilities are available:

o All— All processes/threads receive commands entered in the source panel (default).

The PGDBG Debugger 75

o Current Thread — Commands are applied to the current thread ID only.

o Current Process — Commands are applied to all threads that are associated with the
current process.

o Current Process.Thread — Commands are applied to the current thread on the current
process only.

o Focus — Commands are applied to the focus group selected in the Focus Panel (described
in Section 1.12.1 Main Window). Refer to Section 1.15.5 Process/Thread Sets for more
information on this advanced feature.

If you are debugging a serial program, then this combo box is not displayed.

Similar to the Process/Thread Grid, the Context Selector allows you to change the current
Process, Thread, or Process.Thread 1D that you are currently debugging. If you are debugging a
serial program, then this combo box is not displayed.

The Source File Selector displays the current file being debugged and allows you to select and
view a different file in the Source Panel. When this combo box is closed, it displays the name of
the source file displayed in the Source Panel. To select a different source file, open its combo box
and select a file from the list. If the source file is available, the source file will appear in the
Source Panel.

The Scope Selector displays the current scope of the current Program Counter (PC) that you are
debugging. You can open its combo box and select a different scope from the list or use the up
and down buttons located on the right of the combo box. The up button is equivalent to the up
debugger command and the down button is equivalent to the down debugger command. See
Section 1.9.1.7 Scope for more information on the up and down commands.

The Display Mode Selector allows you to select three different source display modes: Source,
Disassembly, and Mixed. The Source mode shows the source code of the current source file
indicated by the File Selector. This is the default display mode if the source file is available. The
Disassembly mode shows the machine instructions of the current routine that you are debugging.
This is the default display mode if the source file is not available. The Mixed mode shows machine
instructions annotated with source code. This mode is available only if the source file is available.

1.12.2.4 Source Panel Messages

The source panel contains two message areas. The top center indicates the current process/thread
ID (e.g., Thread 0 in Figure 1-6) and the bottom left displays status messages (e.g., Stopped at line
11... in Figure 1-6).

76 Chapter 1

1.12.2.5 Source Panel Events

Events, such as breakpoints, are displayed under the Event column in the source panel. Currently,
the source panel can only display breakpoint events. A stop sign icon denotes a breakpoint.
Breakpoints are added through the source panel by left mouse clicking on the desired source line
under the Event column. Left mouse click a stop sign to clear its breakpoint. Select the Events item
under the Window menu to view a global list of Events (e.g., breakpoints, watch points, etc.).

1.12.3 Subwindows

A subwindow is defined as any PGDBG GUI component that is not embedded in the main
window described in Section 1.12.1 Main Window. One example of a subwindow is the Program
1/0 window introduced in Figure 1-2. Other examples of subwindows can be found under the
source panel’s Window menu. These include the Registers, Stack, Locals, Custom, Disassembler,
Memory, Messages, Events, and Command Window subwindows. With the exception of the
Command Window, all of these subwindows have similar capabilities. Therefore, we will describe
only a sampling of these subwindows here. See the description of the Window menu, Section
1.12.2.1 Source Panel Menus, for more information on each subwindow.

Besides using the Window menu to bring up a subwindow, you can right mouse click on a blank
spot in the source panel to bring up a pop-up menu (Figure 1-6). Use this pop-up menu to select a
subwindow. The subwindow that gets displayed is specific to the current process and/or thread.
For example, in Figure 1-6, selecting Registers will display the registers for thread 0, which is the
current thread.

The PGDBG Debugger 77

Figure 1-6: Opening a Subwindow with a Pop-up Menu

(| PGDBG - The Portland Group Compiler Technology x
File Settings

-~
-

All Threads

4]
al

[*]

Thread Grid

-

Thread O

'I'hreadOv Data Window Control Options ompc'|

Line Mo. | Ewent | PC | fhome/swidermos, /T OOLS_DEMO/OMP jomp.c
1 #include <stdio.hx-
g) Begisters

main
4 o Stack
5 printT("0ne Thread ... “n"J; Locals
6 Custom
7 #pragna omp parallel ;
8 ied D Disassembler
9 int myid,; Mermory
10 Messages
11 @ b4 myid = omp_get_thread_numil;
12 Refresh
13 Tori=0;1<2; 1+ 4
14 priNTTEHELLD %d, %dsn®, getpid(), omp_geT_Thread_numidd;
15 ¥
16
17 i
18
19 printf("... back to one thread.»n"};
20
21 return;
2z T
[

#0 main Tine: 11 in "omp.c" address: OxB04973e - “v{ | Source
Stopped af line 11 (address 0x804973e) in file fhome/swidemos/TOOLS_DEMO/OMPfamp.c
!

Chapter 1

1.12.3.1 Memory Subwindow

Figure 1-7 shows the memory subwindow. The memory subwindow displays a region of memory
in a printf-like format descriptor. It is essentially a graphical interface to the debugger dump
command (Section 1.9.1.9 Memory Access).

This subwindow shows all of the possible controls that you can expect in a subwindow. Not all
subwindows will have all of the components shown in this figure. However, nearly all will have
the following components: File menu, Options menu, Reset button, Close Button, Update button,
and the Lock/Unlock toggle button.

The File menu contains the following items:
e Save... - Save the text in this subwindow to a file.

e (Close — Close the subwindow.

The Options menu contains the following items:
e Update — Clear and regenerate the data displayed in the subwindow.

e Stop — Interrupt processing. This option comes in handy during long listings that can occur in
the Disassembler and Memory subwindows. Control C is a hot key mapped to this menu item.

e Reset — Clear the subwindow.

The Reset, Close, and Update buttons are synonymous with their menu item counterparts
mentioned above. The Lock/Unlock toggle button, on the other hand, has its own unique purpose.
The Lock/Unlock button, located in the lower right hand corner of a subwindow, toggles between
a lock and an unlock state. Figure 1-7 shows this button in an unlocked state. Note that the button
is labeled Lock. Figure 1-8 shows this button in a locked state. Note that the button is labeled
Unlock.

When the Lock/Unlock button is in its unlocked state, subwindows will update themselves
whenever a process or thread halts. This can occur after a step, next, or cont command. If you
want to preserve whatever is in a subwindow, left mouse click the Lock button to lock the display
in the subwindow. Figure 1-8 shows an example of a locked subwindow. Note that some of the
controls in Figure 1-8 are disabled (greyed out). After locking a subwindow, the GUI will disable
any controls that affect the display until you unlock the subwindow. To unlock the subwindow,
click the Unlock button. The toggle button will now say Lock and the GUI will re-enable the other
controls.

The PGDBG Debugger 79

Besides the previously mentioned memory subwindow capabilities, subwindows may also have
one to three input fields. In the Memory subwindow, the user enters the starting address in the
Address field, the number of items in the Count field, and a printf-like format string in the Format
field.

If the subwindow has one or more input fields, then there is also a Stop and Clear button. The
Stop button is synonymous with the Stop menu item mentioned above. The Clear button erases the
input field(s).

If you are debugging a program with more than one process and/or thread, you will also get a
Context Selector in the bottom center as shown in Figure 1-7. With the Context Selector you can
view data specific to a particular process/thread or a subset of process/threads when you select
Focus. Refer to Section 1.15.5 Process/Thread Sets for more information on Focus.

Figure 1-7: Memory Subwindow

B PGDEG Memory Dump X
File Options

Addresss |Tiac
Counts (12
Formats [&T

| Stop H Clear |
[0] dump fjac, 12, "¥f"
kb TTTe3ad: O, 000000
whTTfe3ad: 1, 000000
kb TTfe36c: 0. 000000
¥bTFfe370: 1. 000000
kb TTfe374: 0. 000000
¥bTfe37E: 1.000000
¥bTTfe37c: 0. 000000
kb Tfe380: 1. 000000
kb TTfe38d: 0. 000000
wbTTfe38E: 1. 000000
kb TTfe38c: 0. 000000
wbTrfe3o0: 1. 000000

| Reset || Close | Thread O hd Update || Lock |

80 Chapter 1

1.12.3.2 Disassembler Subwindow

Figure 1-8 shows the Disassembler subwindow. Use this subwindow to disassemble a routine (or
a text address) specified in the Request> input field. PGDBG will default to the current routine if
you specify nothing in the Request> input field. After a request is made to the Disassembler, the
GUI will ask if you want to “Display Disassembly in the Source window”. Choosing “yes” causes
the Disassembler window to disappear and the disassembly to appear in the source panel. By
viewing the disassembly in the source panel, you can set breakpoints at the machine instruction
level. Choosing “no” will dump the disassembly in the Disassembler subwindow as shown in
Figure 1-8.

Sometimes you may not know the name of the routine you want to disassemble. You may only
have a text address. Specifying just a text address in the Request> field will cause PGDBG to
disassemble address locations until it runs out of memory or hits an invalid op code. This may
cause very large machine language listings. For that case, the subwindow provides a Stop button.
You can hit the Stop button to interrupt long listings that may occur with the Disassembler. You
can also specify a count after the text address to limit the number of instructions dumped to the
subwindow. For example, entering Oxabcdef, 16 tells PGDBG to dump up to 16 locations
following address Oxabcdef. The Request> field can take the same arguments as the disasm
command described in Section 1.9.1.4 Program Locations.

The PGDBG Debugger 81

Figure 1-8: Disassembler Subwindow
(| PGDBG Disassembler x
File Options

Request=

"ShomeSswSdemos,Lest. c'@main
Tine 3:6
int main() 4

float fjac[NW];

int 1;
BO4E5a0: 55 pushl ¥ebp
BOd85al: 89 &5 maw esp,kehp
BO4E5a3: HI ed T8 and1 SO TFFTTfra, sesp
BO485a60: 89 2d 90 598 4 § ol ebp, 0xB0459800
BO4E5ac: 8h 55 0 moyl QO %ehp), ¥edx
BOds5arf: 89 14 24 maw edy, Ckespd
BO4EShZ: 8h 55 4 moyl 4 %ehpd, Kedx
BO485ha: 89 54 24 4 maw edy, 4 0kesp)
BO4ESh9: Bh 55 8 moyl B Mehp), Kedx
NASS e = Y. | nir 1 A=Tal i A=T={u]

82 Chapter 1

1.12.3.3 Registers Subwindow

Figure 1-9 illustrates the Registers subwindow. As mentioned earlier, you can view the registers
on one or more processes and threads using the Context Selector. The Registers subwindow is
essentially a graphical representation of the regs debugger command (see Section 1.9.1.8 Register

Access).
Figure 1-9: Registers Subwindow
(| PGDBG Registers >
File Qptisns
ebx 1075461008 Oxd401a3b80 | es 43 Oxzh =
ECH 0 | = 4] Qxi
edx 48 Q%30 | gs 0 Qx0
B 1073823776 0x40014020 | orig_eax -1 Oxfrffrffer
edi -1073749020 Oxhfffeled | eip 134517535 OQxB04931F
ebp -1073749008 Oxhfffe398 | cs 35 0x23
Bax 134517535 (OxB04931F | eflags 2097798 Ox200286
d= 43 Ox2h | esp -1073749152 Oxbfffe360
== 43 Ox2h |
o Ox3TTO0000 GOOOO000 0% 3T TE000000000000000 1
dl Q00000000 GO0O00O00 0000000000000 00000 0
2 Q00000000 GO0O0000 Q0000000000000 00000 0
i3 Q00000000 GO0O0000 Q0000000000000 00000 0
4 Q00000000 Q0000000 Q0000000000000 00D00 0
oS Q00000000 Q0000000 Q0000000000000 00D00 0
vl Q00000000 Q0000000 Q0000000000000 00D00 0
o7 Q00000000 Q0000000 Q0000000000000 00D00 0
| Fesat || Close | Thread O hd Update || Lack, |
l I
The PGDBG Debugger 83

1.12.3.4 Custom Subwindow

Figure 1-10 illustrates the Custom subwindow. The Custom subwindow is useful for repeatedly
executing a sequence of debugger commands whenever a process/thread halts on a new location
or when you press the Update button. The commands, entered in the control panel, can be any
debugger command mentioned in Section 1.10 Commands Summary.

Figure 1-10: Custom Subwindow
O PGDBG Custom X

File Cptisns

Command:> |pr1’nt fiac[0:11] |

| Stop || Clear |

] print Tjac[0:11] :
I1ololol1o0l1o01l

| Feset || Cloze | Current Thread « Update || Lock |

84 Chapter 1

1.12.4 Selecting and Printing Data

We introduced data printing in Section 1.12.2.1 Source Panel Menus when we described the Data
menu. To print data, left mouse click the text in the source panel that you wish to print. A text
field displays in the source panel around the text on which you clicked. While holding down the
left mouse button, drag the mouse pointer over the text that you want to print. The GUI will
highlight this text. When you are done highlighting, release the left mouse button and select the
desired print option from the Data menu or press the right mouse button for a pop-up menu. The
pop-up menu is demonstrated in Figure 1-11.

Besides printing, you can also select Disassemble, Call, and Locate from the Options or pop-up
menu. All three of these items assume that your selected text is a routine. The Disassemble item
will open a disassembler subwindow with your selected routine. The Call item can be used to
manually call the selected routine. The Locate option will take you to the location in the source
code where the selected routine is defined. Please see the description for each of these items under
the Options menu, Section 1.12.2.1 Source Panel Menus, for more information.

The PGDBG Debugger 85

86

File Settings

Figure 1-11: Data Pop-up Menu

PGDBG - The Portland Group Compiler Technology x

All Threads

Thread Crid

— Thread O
@ @ bl 2 PF 2 VO Al ~
Run | Hah | Cont Mext | Step | Stepo Mexti| Stepi| Back

Thread 0 v | Data Window Contral Options omp.c"|

Line Mo. | Event | PC [fhomejswjdemos/TOOLS_DEMO/OMPfomp.c
1 #include <stdio. b=
2
3 mainid
4
5 printf{"0ne thread ... ~n"J;
]
T Fpragma omnp parallel
g
=] int myid,i;
10
11 [myid = omp_oet_thread_numi;
12 Print
13 ® N Torli=0i<d; i+ Print Sptions H Print ™
14 rintT{"HELLO %d, ¥d-n",get 7 .
a5 1 . ¢ g Locate Routine | String
16 Disassemble Ein
by b call... e
Hex

19 printf{"... back to ane thread.*n"J; =
20 Dac
21 return; Ascii
22 > Addr

<

#3 main line: 14 Hn "onp.c" address: O=S049755 V"%{ ‘Source

Stopped at line 14 (address 0x&0459756) in file thomefsw/demaos/TOOLE_DEM O/ OMPYomp.c

Chapter 1

1.12.3.5 Messages Subwindow

Figure 1-14 (in section 1.17.3) illustrates the Messages subwindow. Refer to Section 1.17.3 MPI
Message Queues for more information on the content of this subwindow.

1.13 PGDBG: Parallel Debug Capabilities

This section describes the parallel debug capabilities of PGDBG. PGDBG is a parallel application
debugger capable of debugging distributed-memory MPI programs, thread-parallel shared-
memory parallel (SMP) OpenMP and Linuxthreads/pthreads programs, and hybrid
shared/distributed programs that use MPI to communicate between thread-parallel SMP processes.

See http://www.pgroup.com/docs.htm for the most recent documentation. This material is also
available in $PGI/docs/index.htm. See http://www.pgroup.com/fag/index.htm for an online FAQ.

1.13.1 OpenMP and Linuxthread Support

e Full thread control in parallel regions

Thread grouping

e Threads presented by their OpenMP logical thread number
e Line level debugging preserved when thread

o Enters a parallel region

o Enters a serial region

o Hits an OpenMP barrier

o Hits an OpenMP synchronize statement

o Enters an OpenMP sections program section

e Informative messages regarding thread state and location

1.13.2 MPI Support
e Automatic process detection and attach

e Informative messages regarding process state and location

The PGDBG Debugger 87

e Process grouping

e Processes presented by their global rank in COMMWORLDx

1.13.3 Process & Thread Control

e Concise control of groups of processes/threads
e Thread and process synchronization

o Configurable thread and process stop mode

e Configurable wait mode

e Serial, process-only, threads-only, and multilevel debug modes

1.13.4 Graphical Presentation of Threads and Processes
e Process grid

e Thread grid

e Graphical grouping logic

e Color depiction of whole program execution state

e Summary panel (selected by the Summary tab in the process/thread grid). Lists each thread by
its logical CPU ID. Displays for each thread its state and stop location. Threads are grouped
by parent process. See Section 1.12.1 Main Window for more information on the Summary
panel.

e Process/Thread grid. Displays each process/thread as a color-coded button in a grid. Click on
a grid element to refresh the GUI in the scope of that process. Each grid element is numbered
with the process/thread’s logical ID. See Section 1.12.1 Main Window for more information
on the process/thread grid.

e Zoom in and out of the Process/Thread Grid to easily focus on a subset of processes/threads.
The zoom slider bar is located on the right of the process/thread grid (Section 1.12.1 Main
Window).

e Control all, some, or one process/thread at a time. Form subsets of processes/threads using
focus groups. See Sectionl.12.1.2 Focus Panel for more information on the Focus Panel.

88 Chapter 1

1.14 Debugging Parallel Programs with PGDBG

This section describes how to invoke the debugger for thread-parallel (SMP) debugging and for
process-parallel (MPI) debugging. It provides some important definitions and background
information on how PGDBG represents processes and threads.

1.14.1 Processes and Threads

An active process is made up of one or more active threads of execution. In the context of a
process-parallel program, a process is an MPI process composed of one thread of execution. In the
context of a thread-parallel program, a thread is an OpenMP or Linux Pthread SMP thread.
PGDBG is capable of debugging hybrid process-parallel/thread-parallel programs where the
program employs multiple SMP processes.

When debugging an OpenMP program, PGDBG identifies threads using their OpenMP IDs.
Otherwise, PGDBG assigns arbitrary IDs to threads; starting at zero and incrementing in order of
thread creation.

When debugging an MPI program, PGDBG identifies processes using their MPI rank (in
communicator COMMWORLD). Otherwise, PGDBG assigns arbitrary IDs to processes; starting
at zero and incrementing in order of process creation. Process IDs are unique across all active
processes.

Each thread can be uniquely identified across all processes by prefixing its thread ID with the
process ID of its parent process. For example, thread 1.4 identifies the thread having thread ID 4
and the parent process having process ID 1.

An OpenMP program (thread-parallel only) logically runs as a collection of threads with a single
process, process 0, as the parent process. In this context, a thread is uniquely identified by its
thread ID. The process ID prefix is implicit and optional. See Section 1.15.2 Threads-only
debugging.

An MPI program (non-SMP) logically runs as a collection of processes, each made up of a single
thread of execution. Thread 0 is implicit to each MPI process. A Process ID uniquely identifies a
particular process, and thread ID is implicit and optional. See Section 1.15.3 Process-only
debugging.

A hybrid, or multilevel MP1/OpenMP program, requires the use of both process and thread IDs to
uniquely identify a particular thread. See Section 1.15.4 Multilevel debugging.

The PGDBG Debugger 89

A serial program runs as a single thread of execution, thread 0, belonging to a single process,
process 0. The use of thread IDs and process IDs is unnecessary but optional.

1.14.2 Thread-Parallel Debugging

PGDBG automatically attaches to new threads as they are created during program execution.
PGDBG describes when a new thread is created; the thread ID of each new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through using the threads command. Use
the procs command to display information about the parent process.

During a debug session, at any one time, PGDBG operates in the context of a single thread, the
current thread. The current thread is chosen by using the thread command when the debugger is
operating in text mode (invoked with the -fext option), or by clicking in the thread grid when the
GUI interface is in use (the default). See Section 1.15.10.2 Thread Level Commands.

The threads command lists all threads currently employed by an active program. The threads
command displays for each thread its unique thread ID, system ID (Linux process ID), execution
state (running, stopped, signaled, exited, or killed), signal information and reason for stopping,
and the current location (if stopped or signaled). The arrow indicates the current thread. The
process ID of the parent is printed in the top left corner. The thread command changes the current
thread.

pgdbg [all] 2> thread 3
pgdbg [all] 3> threads

0 ID PID STATE SIGNAL LOCATION

=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address:
0x80490ab
2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address:
0x80490ct
1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address:
0x80490ab
0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address:
0x8048fal

90 Chapter 1

1.14.2.1 Invoking PGDBG: OpenMP, Linux Pthread Debugging

Use the following to invoke PGDBG, OpenMP, Linux Pthread debugging using text or GUI
mode:

GUI mode:

$pgdbg <executable> <args>,...<args>

TEXT mode:

3pgdbg -text <executable> <args>,...<args>

1.14.3 Graphical Features

The PGDBG Graphical User Interface (GUI) lists all active threads in a thread grid. Each element
of the thread grid is labeled with a thread ID and represents a single thread. Each element is a
button that can be pushed to select a particular thread as the current thread. The PGDBG GUI
displays the program context of the current thread. Figure 1-3 shows the thread grid in the GUI
with two active threads.

Each button in the thread grid is color coded to depict the execution state of the underlying thread.

Table 1-12: Thread State is Described using Color

Option Description

Stopped Red

Signaled Blue

Running Green
Exited Black
Killed Black

The PGDBG Debugger 91

1.14.4 Process-Parallel Debugging

PGDBG automatically attaches to new MPI processes as they are created by a running MPI
program. PGDBG must be invoked via the MPIRUN script. Use the MPIRUN -dbg option to
specify which debugger to use. To choose PGDBG, use -dbg=pgdbg before the executable name
(this is not a program argument). PGDBG must be installed on your system and your PGI
environment variable set appropriately, and added to your PATH.

PGDBG displays an informational message as it attaches to the freshly created processes.
([1] New Process)

The MPI global rank is printed with the message. Use the procs command to list the host and the
PID of each process by rank. The current process is marked with an arrow. To change the current
process by process ID, use the proc command.

pgdbg [all] 0.0> proc 1; procs

Process 1: Thread 0 Stopped at 0x804a0e2, function main, file mpi.c,

line 30
#30: aft=time (&aft);
ID IPID STATE THREADS HOST
0 24765 Stopped 1 local
=1 17890 Stopped 1 red2.wil.st.com

pgdbg [all] 1.0>

The prompt displays the current process and the current thread. The current process above has
been changed to process 1, and the current thread of process 1 is 0. This is written as 1.0. See
Section 1.15.15 The PGDBG Command Prompt for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:
e Atany one time, PGDBG operates in the context of a single process, the current process.
e Each active process has a thread set of size >=1.

e The current thread is a member of the thread set of the current process.

A license file distributed with PGDBG that restricts PGDBG to debugging a total of 64 threads.
Workstation and CDK license files may further restrict the number of threads that PGDBG is
eligible to debug. PGDBG will use the Workstation or CDK license files to determine the number
of threads it is able to debug.

92 Chapter 1

With its 64 thread limit, PGDBG is capable of debugging a 16 node cluster with 4 CPUs on each
node or a 32 node cluster with 2 CPUs on each node or any combination of threads that add up to
64.

Use the proc command to change the current process. Those PGDBG commands that refer to
program scope execute off of the current scope of the current thread by default. The current thread
must be stopped in order to read from its memory space. See Section 1.15.10.2 Thread Level
Commands for a description and list of these context sensitive commands.

To list all active processes, use the procs command. The procs command lists all active processes
by process ID (MPI rank where applicable). Listed for each process: the system ID of the initial
thread, process execution state, number of active threads, and host name. The initial process is run
locally; ‘local’ describes the host the debugger is running on. The execution state of a process is
described in terms of the execution state of its component threads:

Table 1-13: Process state is described using color

Process state Description

Stopped If all threads are stopped | Red
at breakpoints, or where
directed to stop by
PGDBG

Signaled If at least one thread is Blue
stopped on an interesting
signal (as described by

catch)

Running If at least one thread is Green
running

Exited or Killed If all threads have been Black

killed or exited

1.14.4.1 Invoking PGDBG: MPI Debugging

To debug an MPI program, PGDBG is invoked via MPIRUN. MPIRUN sets a breakpoint at
main and starts the program running under the control of PGDBG. When the initial process hits
main no other MPI processes are active. The non-initial MPI processes are created when the
process calls MPT Init.

A Fortran MPI program stops at main initially instead of MAIN. You must step into MAIN.
GUI mode:

$mpirun -np 4 -dbg=pgdbg <executable> <args>,...<args>

The PGDBG Debugger 93

TEXT mode:
sunsetenv DISPLAY
$mpirun -np 4 -dbg=pgdbg <executable> <args>,...<args>
An MPI debug session starts with the initial process stopped at main. Set a breakpoint at a

program location after the return of MPI Init to stop all processes there. If debugging Fortran,
step into the MAIN program.

1.14.4.2 MPI-CH Support

PGDBG supports redirecting stdin, stdout, and stderr with the following MPI-CH
switches:

Table 1-14: MPI-CH Support

Command Output

-stdout <file> .
Redirect standard output to

<file>

-stdin <file> . .
Redirect standard input from

<file>

-stederr <file> .)
Redirect standard error to <file>

PGDBG also provides support for the following MPI-CH switches:

Command Output

-nolocal
PGDBG runs locally, but no MPI
processes run locally

-all-local
PGDBG runs locally, all MPI

processes run locally

If you are using your own version of MPI-CH, see our online FAQ for how to integrate the
MPIRUN scripts with PGDBG.

94 Chapter 1

When PGDBG is invoked via MPIRUN the following PGDBG command line arguments are not
accessible. A possible workaround is listed for each.

Argument ‘ Workaround
-dbx Include 'pgienv dbx on'in
.pgdbgrc file
-s startup Use .pgdbgre default script file and

the script command.

-c "command" Use .pgdbgrc default script file and
the script command.

-text Clear your DISPLAY environment
variable before invoking MPIRUN

-t <target> Add to the beginning of the PATH
environment variable a path to the
appropriate PGDBG.

1.14.4.3 LAM-MPI Support
The CDK comes with MPI-CH. PGDBG is configured to automatically work with MPI-CH.

PGDBG also works with LAM-MPI, but not automatically. For more information, see the online
FAQ at http://www.pgroup.com/faq/index.htm.

1.15 Thread-parallel and Process-parallel Debugging

This section describes how to name a single thread, how to group threads and processes into sets,
and how to apply PGDBG commands to groups of processes and threads.

1.15.1 PGDBG Debug Modes

PGDBG can operate in four debug modes. As a convenience, the mode determines a short form
for uniquely naming threads and processes. The debug mode is set automatically or by using the
pgienv command.

The PGDBG Debugger 95

Table 1-15: The PGDBG Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads
of execution

Process-only Multiple processes, each process
made up of a single thread of
execution

Multilevel Multiple processes, at least one
process employing multiple threads
of execution

PGDBG starts out in serial mode reflecting a single thread of execution. Thread IDs can be
ignored in serial debug mode since there is only a single thread of execution.

If PGDBG is licensed as a Workstation product, it operates in Threads-only mode by default
(however multilevel notation is always valid).

If PGDBG is licensed as a CDK product, it operates in process-only mode by default.

The PGDBG prompt displays the current thread according to the current debug mode. See Section
1.15.15 The PGDBG Command Prompt for a description of the PGDBG prompt.

The pgienv command is used to change debug modes manually.

pgienv mode [serial|thread|process|multilevel]

The debug mode can be changed at any time during a debug session.

1.15.2 Threads-only debugging
Enter threads-only mode to debug a program with a single SMP process. As a convenience the

process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from
serial debug mode when it attaches to SMP threads.

96 Chapter 1

Example 1-1: Thread IDs in threads-only debug mode

1 Thread 1 of all processes (*.1)

* All threads of all processes (*. *)

0.7 Thread 7 of process 0 (Multilevel
thread names valid in threads-only
debug mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on
context.

1.15.3 Process-only debugging

Enter process-only mode to debug a program with non-SMP nodes. As a convenience, the thread
ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial

debug mode when the target program returns from MPI Init.

Example 1-2: Process IDs in process-only debug mode

0 All threads of process 0 (0.*)

* All threads of all processes (*.*)

1.0 Thread 0 of process 1 (Multilevel
thread names are valid in this mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending
on context.

1.15.4 Multilevel debugging

The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process
ID. This forms a unique name for each thread across all processes. This naming scheme is valid in
all debug modes. PGDBG changes automatically to multilevel debug mode from process-only
debug mode or threads only-debug mode when at least one MPI process spawns SMP threads.

Example 1-3: Thread IDs in multilevel debug mode
0.1 Thread 1 of process 0

0.* All threads of process 0

The PGDBG Debugger 97

In multilevel debug, mode status and error messages are prefixed with process/thread IDs
depending on context.

1.15.5 Process/Thread Sets

A process/thread set (p/t-set) is used to restrict a debugger command to apply to just a particular
set of threads. A p/t-set is a set of threads drawn from all threads of all processes in the target
program. Use p/t-set notation (described below) to define a p/t-set.

The current p/t-set can be set using the focus command, which establishes the default p/t-set for
cases where no p/t-set prefix is specified. This begins as the debugger-defined set [a11], which
describes all threads of all processes.

P/t-set notation can be used to prefix a debugger command. This overrides the current p/t-set
defining the target threads to be those threads described by the prefix p/t-set.

The target p/t-set is defined then to be the prefix p/t-set if present, it is the current p/t-set
otherwise.

o Use defset to define a named or user-defined p/t-set.

o Use viewset and whichsets to inspect the active members described by a particular p/t-set.
The target p/t-set determines which threads are affected by a PGDBG command. If you are using
the PGDBG Graphical User Interface (GUI) (Section 1.12 PGDBG GRAPHICAL USER
INTERFACE), then you can define a focus group in the GUI’s Focus panel as an alternative to the

defset command (Section 1.12.1.2 Focus Panel). We will discuss this further in Section 1.15.9 P/t-
set Commands.

1.15.6 P/t-set Notation

The following set of rules describes how to use and construct process/thread sets (p/t-sets).

simple command :

[p/t-set-prefix] command parmO, parml,

compound command :

[p/t-set-prefix] simple-command [; simple-command ...]

p/t-id :

{integer|*}.{integer|*}

98 Chapter 1

Optional notation when processes-only debugging or threads-only debugging is in effect (see the

pgienv command).

{integer|*}

p/t-range :
p/t-id:p/t-id

p/t-list :

{p/t-id|p/t-range}

p/t set :

[[!]{p/t-list|set-name}]

{p/t-id|p/t-range} ...]

Example 1-4: P/t-sets in threads-only debug

[0,4:6] Threads 0,4,5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is
valid in threads-only mode

All threads

Example 1-5: P/t-sets in process-only debug

[0,2:3] Processes 0, 2, and 3 (equivalent to
[0.%,2:3.%])

[*] All processes (equivalent to [*.*])

(0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is
valid in process-only mode.

[0:2.%] Processes 0, 1, and 2. Multilevel

syntax is valid in process-only
debug mode.

The PGDBG Debugger

99

Example 1-6: P/t-sets in multilevel debug mode

[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set
clients

[1] Incomplete; invalid in multilevel
debug mode

P/t-sets defined with defset are not mode dependent and are valid in any debug mode.

1.15.7 Dynamic vs. Static P/t-sets
The members of a dynamic p/t-set are those active threads described by the p/t-set at the time that
p/t-set is used. A p/t-set is dynamic by default. Threads and processes are created and destroyed as

the target program runs. Membership in a dynamic set varies as the target program runs.

Example 1-7: Defining a dynamic p/t-set

defset clients [*.1:3] Defines a named set clients
whose members are threads 1, 2,
and 3 of all processes that are
currently active when clients is
used. Membershipinclients
changes as processes are created
and destroyed.

The members of a static p/t-set are those threads described by the p/t-set at the time that p/t-set is
defined. Use a ! to specify a static set. Membership in a static set is fixed at definition time.

100 Chapter 1

Example 1-8: Defining a Static p/t-set

defset clients [!*.1:3] Defines a named set clients
whose members are threads 1, 2,
and 3 of those processes that are
currently active at the time of the
definition.

1.15.8 Current vs. Prefix P/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger
prompt (depending on debug mode). A p/t-set can be used to prefix a command to override the
current p/t-set. The prefix p/t-set becomes the target p/t-set for the command. The target p/t-set
defines the set of threads that will be affected by a command. See Section 1.15.15 The PGDBG
Command Prompt for a description of the PGDBG prompt.

e The target p/t-set is the current p/t-set:
pgdbg [all] 0.0> cont

Continue all threads in all processes

e The target p/t-set is the prefix p/t-set:
pgdbg [all] 0.0> [0.1:2] cont

Continue threads 1 and 2 of process 0 only

Above, the current p/t-set is the debugger-defined set [a11] in both cases. In the first case,
[all] is the target p/t-set. In the second case, the prefix set overrides [all] as the target p/t-
set. The continue command is applied to all active threads in the target p/t-set. Using a prefix p/t-

set does not change the current p/t-set.

1.15.9 P/t-set Commands

The following commands can be used to collect threads into logical groups.

e defset and undefset can be used to manage a list of named p/t-sets.

e focus is used to set the current p/t-set.

e viewset is used to view the active members described by a particular p/t-set.

e whichsets is used to describe the p/t-sets to which a particular process/thread belongs.

The PGDBG Debugger 101

Table 1-16: P/t-set commands

Command Description

focus Set the target process/thread set for commands.
Subsequent commands will be applied to the
members of this set by default.

defset Assign a name to a process/thread set. Define a
named set. This set can later be referred to by name.
A list of named sets is stored by PGDBG.

undefset 'Undefine' a previously defined process/thread set.
The set is removed from the list. The debugger-
defined p/t-set [all] can not be removed.

viewset List the members of a process/thread set that
currently exist as active threads.

whichsets List all defined p/t-sets to which the members of a
process/thread set belongs.

pgdbg [all] 0> defset initial [O0]

"initial" [0] : [O]

pagdbg [all] 0> focus [initial]
[initial] : [O]
[0]
pgdbg [initial] 0> n
The p/t-set initial is defined to contain only thread 0. We focus on initial and advance the

thread. Focus sets the current p/t-set. Because we are not using a prefix p/t-set, the target p/t-set is
the current p/t-set whichis initial.

The whichsets command above shows us that thread 0 is a member of two defined p/t-sets. The
viewset command displays all threads that are active and are members of defined p/t-sets. The
'pgienv verbose' command can be used to turn on verbose messaging, displaying the stop
location of each thread as it stops.

pgdbg [initial] 0> whichsets [initial]

Thread 0 belongs to:

102 Chapter 1

all

initial

pgdbg [initial] 0> viewset
"all" (*.*] ¢ [0.0,0.1,0.2,0.3]

"initial" [0] : [O]

pgdbg [initial] 0> focus [all]
[all] : [0.0,0.1,0.2,0.3]

[*.*]

pgdbg [all] 0> undefset initial
p/t-set name "initial" deleted.

The examples above illustrate how to manage named p/t-sets in the command-line interface. A
similar capability is available in the PGDBG GUI. In Section 1.12.2 Focus Panel, we introduced
the Focus Panel. The Focus Panel, shown in Figure 1-3, contains a table labeled Focus with two
columns: a Name column and a p/t-set column. The entries in this table are called focus groups.
Like the named p/t-sets created with the defset command, focus groups are named p/t-sets in the
GUL

To create a focus group, left mouse click the Add button in the Focus Panel. This opens a dialog
box similar to the one in Figure 1-12. Enter the name of the focus group in the Focus Name text
field and its p/t-set in the p/t-set text field. Click the left mouse button on the OK button to add the
focus group. You will see the new focus group in the Focus Table. Clicking the Cancel button or
closing the dialog box will abort the operation. The Clear button will clear the Focus Name and
p/t-set text fields

To select a focus group, click the left mouse button on the desired focus group in the table. The
selected focus group is also known as the Current Focus. The GUI will apply all commands
entered in its Source Panel to the Current Focus when you choose Focus in the Apply Selector
(Section 1.12.2.3 Source Panel Combo Boxes). Current Focus can also be used in a GUI
subwindow. Choose Current Focus in a subwindow’s Context Selector (Section 1.12.3
Subwindows) to display data for the Current Focus only.

To modify an existing focus group, select the desired group in the Focus Table and left mouse
click the Modify button. You will see a similar dialog box as Figure 1-12 except the Focus Name
and p/t-set text fields will contain the selected group’s name and p/f-set respectively. You can edit
the information in these text fields and click OK to save the changes.

The PGDBG Debugger 103

To remove an existing focus group, select the desired group in the Focus Table and left mouse
click the Remove button. The GUI will display a dialog box asking you to confirm removal of the
selected focus group. Left mouse click the Yes button to confirm, or click the No button to cancel
the operation.

It should be noted that focus groups are only used by the Apply and Context Selectors in the GUI.
They do not affect focus in the command-line interface. If you are using the command prompt in
the GUI, then you will still need to use the defset and focus commands to change focus within the
command prompt. The focus changes made in the command prompt only affect the command
prompt and not the rest of the GUI.

As an example, let us return to Figure 1-12. Here we created a focus group called “process 0 odd
numbered threads”. The p/t-set associated with this groupis [0.1, 0.3] which indicates
threads 1 and 3 on process 0. In Figure 1-13, we selected this focus group in the Focus Table. We
also chose Focus in the Apply Selector. Any command issued in the Source Panel gets applied to
the Current Focus, or thread 1 and 3 on process 0 only. All other threads will remain idle until we
either select the A/l focus group or choose All in the Apply Selector.

Figure 1-12: Focus Group Dialog Box
| PGDEG p/t-set Editor x

Enter Focus MWame and pst-set.
Example p/t-sets:

[.1,0.2,0.3] - thread 1, 2, and 3 of process 0

[D.*] - all threads of process O
.1, 2.1] - thread 1 of processes 1 and 2
[1:2.1] - thread 1 of processes 1 and 2

Focus Name>|pr|:u:955 0 odd numbered threads |

pit-sets (0.1, 0.3] |

Clear 0], Cancel

104 Chapter 1

Figure 1-13: Focus in the GUI

File Settings

Help

a

Mame

pft-set

all

"1

process O odd numbered threads

[0.1, 0.3]

Add| Modify] Remove|

All Processes

[»]

Process O Thread 1
EEE BRE BEE Focu: -
Run | Hal | Cont MNext | Step | Stepo Mexti| Stepi| Back
|Process.Thread 0.1 v| Data Window Contrel Optiens |ompmpic v|
Line Mo. | Ewent | PC | fhomejswidemos/TOOLS_DEMO/OMPMPIiomampi.c
ekl S—=) = —1 B =g = — B -
5 —
] main{int argc, char **argul{
T
8 int myrank,threadrank;
=] char hname[32];
10 int i;
11
1z @ WPI_Init(&argc, &argy 3;
13
14 gethostname Chname, 323
15 MPI_Comm_rank{MPI_COMM_WORLD, &myrankl ;
16
17 #pragna omp parallel
18 {
19 int i;
20 Tor{i=0;i<3;i+id
21 > printt(sk Edwn" hnamne, myrank, onp_get_thread_numill;
22 ¥
23 #pragna omp barrier
24 I3
25
26 MPI_Finalize();
27
28 return;
29
30 A maints
o
|#O main Tine: 21 in "ompmpi.c" address: OxB04ad4c hd }%{ |Source hd
Stopped at line 21 (address Ox804adda in file fhome/swidemos/TOOLE_DEMOSOMPMP ampmpi.c

The PGDBG Debugger

105

1.15.10 Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint
subsets according to how each command reacts to the current p/t-set. Process level and thread
level commands are parallelized. Global commands are not.

Table 1-17: PGDBG Parallel Commands

Commands Action

Process Level Commands Parallel by current p/t-set or prefix
p/t-set
Thread Level Commands Parallel by prefix p/t-set. Ignores

current p/t-set

Global Commands Non-parallel commands

1.15.10.1 Process Level Commands
The process level commands are the PGDBG control commands.
The PGDBG control commands apply to the active members of the current p/t-set by default. A
prefix set can be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if
present. If a target p/t set does not exist, the current p/t-set is the prefix.

cont next nexti step stepi

stepout sync synci halt wait

Example:
pgdbg [all] 0.0> focus [0.1:2]
pgdbg [0.1:2] 0.0> next

The next command is applied to threads 1 and 2 of process 0.

Example:

pgdbg [clients] 0.0> [0.3] n

106 Chapter 1

This demonstrates the use of a prefix p/t-set. The next command is applied to thread 3 of process 0

only.

1.15.10.2 Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is
used, these commands execute in the context of the current thread of the current process by
default. That is, thread level commands ignore the current p/t-set. Thread level commands can be
applied to multiple threads by using a prefix p/t-set. When a prefix p/t-set is used, the commands
in this section are executed in the context of each active thread described by the prefix p/t-set.
The target p/t-set is the prefix p/t-set if present, or the current thread if not prefix p/t set exists.
The thread level commands are:

set

fp

func
decl
sizeof
fread
dec
string
noprint
stackdump
break

doi

assign
retaddr
lines
whatis
iread
dread
oct
disasm
where
scope
do

hwatch

pc
regs
addr
rval
cread
print
bin
dump
stack
watch

watchi

sp
line
entry
lval
sread
hex
ascii
pf
break*
track

tracki

* breakpoints and variants: (stop, stopi, break, breaki) if no prefix p/t-set is specified, [all] is used
(overriding current p/t-set).

The following occurs when a prefix p/t-set is used:

o the threads described by the prefix are sorted per process by thread ID in increasing order.

e the processes are sorted by process ID in increasing order, and duplicates are removed.

e the command is then applied to the threads in the resulting list in order.

The PGDBG Debugger

107

pgdbg [all]

0

0.0> print myrank

Without a prefix p/t-set, the print command executes in the context of the current thread of the
current process, thread 0.0, printing rank 0.

The thread members of the prefix p/t-set are sorted and duplicates are removed. The print

pgdbg [all]
[1.0] print
1
[2.0] print
2
[2.1] print
2
[2.2] print
2
[3.0] print
3
[3.2] print
3
[3.1] print
3

0.0> [2:3.*%,1:2.*] print myrank

myrank:

myrank:

myrank:

myrank:

myrank:

myrank:

myrank:

command iterates over the resulting list.

1.15.10.3 Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all

threads across all processes. The current p/t-set and a prefix p/t-set are ignored.

108

Chapter 1

The following is a list of commands that are defined globally.

debug run rerun threads
procs proc thread call
unbreak delete disable enable
arrive wait breaks status
help script log shell
alias unalias directory repeat
pgienv files funcs source
use cd pwd whereis
edit / ? history
catch ignore quit focus
defset undefset viewset whichsets
display

1.15.11 Process and Thread Control

PGDBG supports thread and process control (‘stepping’, ‘nexting', 'continuing' ...) everywhere in
the program. Threads and processes can be advanced in groups anywhere in the program.

The PGDBG control commands are:
cont, step, stepi, next, nexti,
stepout, halt, wait, sync, synci
To describe those threads you wish to advance, set the current p/t-set or use a prefix p/t-set.
A thread inherits the control operation of the current thread when it is created. So if the current
thread 'next's over an _mp init call (at the beginning of every OpenMP parallel region), then all

threads created by mp_ init will 'next' into the parallel region.

A process inherits the control operation of the current process when it is created. So if the current
process is 'continuing' out of a call to MPI Init, the new process will do the same.

The PGDBG Debugger 109

The PGDBG GUI supports process/thread selection via the use of the process/thread grid. To
change the current process/thread, click on the corresponding button in the grid. See Section
1.12.1 Main Window for sample of the graphical user interface.

Accompanying each grid is a set of toggle buttons with the labels ‘all”’ or ‘current’. These buttons
can be used to construct a prefix p/t-set for the next command. The toggle buttons apply to the
‘cont’, 'stepout’, 'next’, 'nexti', 'step’, 'stepi’, 'halt', and 'wait' buttons only.

1.15.12 Configurable Stop Mode

PGDBG lets you configure how threads and processes stop in relation to one another. PGDBG
defines two new pgienv environment variables, threadstop and procstop, for this
purpose. PGDBG defines two stop modes, synchronous (sync) and asynchronous (async).

Table 1-18: PGDBG Stop Modes

Command Result

sync Synchronous stop mode; when one
thread stops at a breakpoint (event),
all other threads are stopped soon
after

async Asynchronous stop mode; each
thread runs independently of the
other threads. One thread stopping
does not affect the behavior of
another

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [synclasync]

Process stop mode is set using the pgienv command as follows:
pgienv procstop [synclasync]
PGDBG defines the default to be asynchronous for both thread and process stop modes. When

debugging an OpenMP program, PGDBG automatically enters synchronous thread stop mode in
serial regions, and asynchronous thread stop mode in parallel regions.

110 Chapter 1

The pgienv environment variable threadstopconfig and procstopconfig can be set to
automatic (auto) or user defined (user) to enable or disable this behavior.

pgienv threadstopconfig [auto|user]

pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes
automatically. Automatic stop configuration is the default for both threads and processes.

1.15.13 Configurable Wait mode

Wait mode describes when PGDBG will accept the next command. The wait mode is defined in
terms of the execution state of the program. Wait mode describes to the debugger which
threads/processes must be stopped before it will accept the next command. In certain situations, it
is desirable to be able to enter commands while the program is running and not stopped. The
PGDBG prompt will not appear until all processes/threads are stopped. However, a prompt may
be available before all processes/threads have stopped. Pressing <enter> at the command line
will bring up a prompt if it is available. The availability of the prompt is determined by the current
wait mode and any pending wait commands (described below).

PGDBG accepts a compound statement at each prompt. Each compound statement is a bundle of

commands, which are processed in order at once. The wait mode describes when to accept the
next compound statement. PGDBG supports three wait modes:

Table 1-19: PGDBG Wait Modes

Command Result

any The prompt is available only after at least one
thread has stopped since the last control
command

all The prompt is available only after all threads

have stopped since the last control command

none The prompt is available immediately after a
control command is issued

o Thread wait mode describes which threads PGDBG waits for before accepting a next
command.

e Process wait mode describes which processes PGDBG waits for before accepting a next
command.

The PGDBG Debugger 111

Thread wait mode is set using the pgienv command as follows:

pgienv threadwait [anyl|all|none]

Process wait mode is set using the pgienv command as follows:

pgienv procwait [anyl|all|none]
If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode PGDBG defaults to
threadwait all

procwait any

If the target program goes MPI parallel then procwait is changed to hone automatically by
PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically
by PGDBG. The pgienv environment variable threadwaitconfig can be set to automatic
(auto) or user defined (user) to enable or disable this behavior.

pgienv threadstopconfig [auto | user]

Selecting the user defined wait mode prevents the debugger from changing wait modes
automatically. Automatic wait mode is the default thread wait mode.

PGDBG defaults to the following in GUI mode:
threadwait none

procwait none

Setting the wait mode may be necessary when invoking the debugger using the —s (script file)
option in GUI mode (to ensure that the necessary threads are stopped before the next command is
processed if necessary).

PGDBG also provides a wait command that can be used to insert explicit wait points in a
command stream. Wa it uses the target p/t-set by default, which can be set to wait for any
combination of processes/threads. The wait command can be used to insert wait points between
the commands of a compound statement.

112 Chapter 1

The threadwait and procwait environment variables can be used to configure the behavior

of wait (see pgienv).

The following table describes the behavior of wait. In the example in the table:

e Sis the target p/t-set

e Pis the set of all processes described by S and p is a process

e T is the set of all threads described by S and t is a thread

Table 1-20: PGDBG Wait Behavior

Command threadwait procwait Wait set

wait all all Wait for T

wait all nonelany Wait for all threads in at
least one p in P

wait nonelany all Wait for T

wait nonelany nonelany Wait for all t in T for at
least one p in P

wait any all all Wait for at least one thread
for each process p in P

wait any all nonelany Wait for at least one tin T

wait any nonelany all Wait for at least one thread
in T for each process p in P

wait any nonelany nonelany Wait for at least one tin T

wait all all all Wait for T

wait all all nonelany Wait for all threads of at
least one p in P

wait all nonelany all Wait for T

The PGDBG Debugger

113

Command threadwait procwait Wait set

wait all nonelany nonelany Wait for all t in T for at
least one p in P

Wait none alljnone| alllnonejany | Wait for no threads
any

1.15.14 Status Messages

Use the pgienv command to enable/disable various status messages. This can be useful in text
mode in the absence of the graphical aids provided by the GUI.

pgienv verbose <bitmask>
Choose the debug status messages that are reported by PGDBG. The tool accepts an integer
valued bit mask of the values described in the following table.

Table 1-21: PGDBG Status Messages

Thread Format Information

0x1 Standard Report status information on current process/thread only. A
message is printed only when the current thread stops. Also
report when threads and processes are created and destroyed.
Standard messaging cannot be disabled. (default)

0x2 Thread Report status information on all threads of (current) processes.
A message is reported each time a thread stops. If Process
messaging is also enabled, then a message is reported for each
thread across all processes. Otherwise, messages are reported
for threads of the current process only.

0x4 Process Report status information on all processes. A message is
reported each time a process stops. If Thread messaging is also
enabled, then a message is reported for each thread across all
processes. Otherwise messages are reported for the current
thread only of each process.

114 Chapter 1

0x8 SMP Report SMP events. A message is printed when a process
enters/exits a parallel region, or when the threads synchronize.
The PGDBG OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default). Currently unused.
0x32 Symbolic Report any errors encountered while processing symbolic
debug debug information (e.g. STABS, DWAREF).
information

1.15.15 The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode (See Section 1.15.1 PGDBG
Debug Modes).
In serial debug mode, the PGDBG prompt looks like this:
pgdbg>
In threads-only debug mode, PGDBG displays the current p/t-set followed by the ID of the current
thread.
pgdbg [all] 0>
Current thread is 0
In process-only debug mode, PGDBG displays the current p/t-set followed by the ID of the
current process.
pgdbg [all] 0>
Current process is 0
In multilevel debug mode, PGDBG displays the current p/t-set followed by the ID of the current
thread prefixed by the id of its parent process.
pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to
printing the current p/t-set at the prompt.

See Section 1.15.1 PGDBG Debug Modes for a description of the PGDBG debug modes.

The PGDBG Debugger 115

1.15.16 Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and
processes. 1.9.1.3 Events, such as breakpoints and watchpoints, are user-defined events. User
defined events are Thread Level commands (See Section 1.15.10.2 Thread Level Commands for
details).

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to
set breakpoints on specific processes and threads.

Example:
i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

i and ii are equivalent. 1ii sets a breakpoint on threads 1,2,3 of
process 0 only.

All other user events by default are set for the current thread only. A prefix p/t-set can be used to
set user events on specific processes and threads.

Example:
i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

i sets a data breakpoint for glob on thread 0 only. 1ii sets a data
breakpoint for glob on all threads that are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for it thus far. All
other events must be defined after the process/thread is created. All processes must be stopped to
add, enable, or disable a user event.

Many events contain 'if' and 'do' clauses.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0}

116 Chapter 1

Example:
i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all]l b 15
iii) pgdbg [all] 0> [0.1:3] b 15

i and ii are equivalent. 1ii sets a breakpoint on threads 1,2,3 of
process 0 only.

All other user events by default are set for the current thread only. A prefix p/t-set can be used to
set user events on specific processes and threads.

Example:
i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

i sets a data breakpoint for glob on thread 0 only. 1i sets a data
breakpoint for glob on all threads that are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for it thus far. All
other events must be defined after the process/thread is created. All processes must be stopped to
add, enable, or disable a user event.

Many events contain 'if' and 'do' clauses.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0}

The breakpoint will fire only if glob is non-zero. The 'do' clause is executed if the breakpoint
fires. The 'if clause and the 'do' clause execute in the context of a single thread. The conditional in
the 'if' and the body of the 'do' execute off of a single (same) thread; the thread that triggered the
event. Think of the above definition as:

[0] 1f (glob!=0) {[0] set £

0}
[1] 1f (glob!=0) {[1l] set £ = 0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If gl ob evaluates to non-
zero, f is bound in the context of thread 1 and its value is set to 0.

The PGDBG Debugger 117

Control commands can be used in 'do' clauses, however they only apply to the current thread and
are only well defined as the last command in the 'do' clause.

Example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0; c}

If the wait command appears in a 'do' clause, the current thread is added to the wait set of the
current process.

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}
'if conditionals and 'do' bodies cannot be parallelized with prefix p/t-sets.

Example:

pgdbg [all] 0> break func if (glob!=0) do {[*] set £ 0} ILLEGAL

This is illegal. The body of a 'do' statement cannot be parallelized.

1.15.17 Parallel Statements

This section describes how to use a p/t-set to define a statement across multiple threads and
processes.

1.15.17.1 Parallel Compound/Block Statements

Example:

pgdbg [all] 0>[*] break main;

cont; wait; print f@11@1i

ii.) pgdbg [all] 0>[*] break main;

[*]cont; [*]wait; [*]print f@11@i
i. and ii. are equivalent. Each command in a compound statement is executed in order. The target
p/t-set is broadcast to all statements. Use the wait command if subsequent commands require

threads to be stopped (the print command above). The commands in a compound statement are
executed together in order.

The threadwait and procwait environment variables do not affect how commands within a

compound statement are processed. These pgienv environment variables describe to PGDBG
under what conditions (runstate of program) it should accept the next (compound) statement.

118 Chapter 1

1.15.17.2 Parallel If, Else Statements

This section describes parallel 'if' and 'else' statements.
Example:
pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}
A prefix p/t-set parallelizes an 'if' statement. An 'if' statement executes in the context of the current
thread by default. The above example is equivalent to:
[*] if (i==1) ==> [s]
[s]lbreak func; [s]c; [s]lwait;
else ==> [s']

[s']sync func?2

Where [s] is the subset of [*] for which (i==1), and [s'] is the subset of [*] for which (i!=1).

1.15.17.3 Parallel While Statements
This section describes parallel 'while' statements.

Example:

pagdbg [all] 0> [*] while (i<10) {n; wait; print i}

A prefix p/t-set parallelizes a 'while' statement. A 'while' statement executes in the context of the
current thread by default. The above example is equivalent to:

[*] ==> [s]
while ([[s]) {
[s] if (i<10) ==> [s]

[s]ln; [s]lwait; [s]lprint i;

The PGDBG Debugger 119

Where [s] is the subset of [*] for which (i<10). The 'while' statement terminates when [s] is the
empty set (or a 'return') statement is executed in the body of the 'while'.

1.15.17.4 Return Statements

The ‘return’ statement is defined only in serial context, since it cannot return multiple values.
When 'return’ is used in a parallel statement, it will return the last value evaluated.

1.16 OpenMP Debugging

An attempt is made by PGDBG to preserve line level debugging and to help make debugging
OpenMP programs more intuitive. PGDBG preserves line level debugging across OpenMP
threads in the following situations:

e Entrance to parallel region

e Exit parallel region

e Nested parallel regions synchronization points
e Critical and exclusive sections

e Parallel sections

1.16.1 Serial vs. Parallel Regions

The initial thread is the thread with OpenMP ID 0. Conceptually, the initial thread is the only
thread that is well defined (for the purpose of doing useful work) in a serial region of code. All
threads are well defined in a parallel region of code. When the initial thread is in a serial region,
the non-initial threads are busy waiting at the end of the last parallel region, waiting to be called
down to do some work in the next parallel region. All threads enter the (next) parallel region only
when the first thread has entered the parallel region, (i.e., the initial thread is not in a serial
region.)

PGDBG source line level debugging operations (next, step,...) are not well defined for non-initial
threads in serial regions since these threads are stuck in a busy loop, which is not compiled to
include source line information. The instruction level PGDBG control commands (rexti, stepi, ...)
are well defined if you want to advance through the described wait loop at the assembly level.

To ease debugging in serial and parallel regions of an OpenMP program, PGDBG automatically
configures both the thread wait mode and the thread stop mode of the debug session.

120 Chapter 1

Upon entering a serial region, PGDBG automatically changes the thread stop mode to
synchronous stop mode and the thread wait mode to *a11’. This allows you to easily control all
threads together in serial regions. For example, a next command, applied to all threads in a serial
region, will complete successfully when the initial thread hits the next source line.

Upon entering a parallel region, PGDBG automatically changes the thread stop mode to
asynchronous stop mode and the threadwait mode to ‘none’. This allows you to control each
thread independently. For example, a next command, applied to all threads in a parallel region,
will not complete successfully until all threads hit their next source line. With the thread wait
mode set to ‘none’, use the halt command on threads that hit barrier points.

To disable the automatic configuration of the thread wait and thread stop modes, see the
threadstopconfig and threadwaitconfig options of the pgienv command (Section 1.9.1.11
Miscellaneous).

The configuration of the thread wait and stop modes, as described above, occurs automatically for
OpenMP programs only. When debugging a Linuxthread program, the threadstop and threadwait
configuration options should be set using the pgienv command (Section 1.9.1.11 Miscellaneous).

1.16.2 The PGDBG OpenMP Event Handler

PGDBG provides explicit support for OpenMP events. OpenMP events are points in a well-
defined OpenMP program where the behavior of one thread depends on the location of another
thread. For example, a thread may continue after another thread reaches a barrier point. The
PGDBG OpenMP event handler is disabled by default. It can be enabled using the omp pgienv
environment variable as shown below:

pgienv omp [on | off]
The PGDBG OpenMP event handler sets breakpoints before a parallel region, after a parallel
region, and at each thread synchronization point. This causes a noticeable slowdown in

performance of the program as it runs with the debugger.

The OpenMP event handler is deprecated as of PGDBG release 5.2.

The PGDBG Debugger 121

1.17 MPI Debugging

1.17.1 Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed SMP
programs. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as it
is created.

See Section 1.14.4 Process-Parallel Debugging to get started.

Here are some things to consider when debugging an MPI program:
e Use p/t-sets to focus on a set of processes. Mind process dependencies.
e In order for a process to receive a message, the sender must be allowed to run.

e Process synchronization points, such as MPI Barrier, will not return until all processes
have hit the sync point.

e MPI Finalize will notreturn for Process 0 until Process 1..n-1 exit.
A control command (cont, step,...) can be applied to a stopped process while other processes are
running. A control command applied to a running process is applied to the stopped threads of that

process, and is ignored by its running threads. Those threads that are held by the OpenMP event
handler will also ignore the control command in most situations.

PGDBG automatically switches to process wait mode none ('pgienv procwait none')
as soon as it attaches to its first MPI process. See the pgienv command and Section 1.17.5 MPI

Listener Processes for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging
MPI programs since MPIRUN passes arguments to the program that must be included.

1.17.2 Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the
program.

pgdbg [all] 0.0> sync MPI Finalize

This command runs all processes to MPI Finalize.

122 Chapter 1

pgdbg [all] 0.0> [0:1.*] sync MPI Finalize
This command runs process 0 and process 1 to MPI Finalize.

A synchronize command will only successfully sync the target processes if the sync address is well
defined for each member of the target process set, and all process dependencies are satisfied
(otherwise the member could wait forever for a message for example). The debugger cannot
predict if a text address is in the path of an executing process.

1.17.3 MPI Message Queues

PGDBG can dump the MPI message queues through the mgdump command (Section 1.9.1.9
Memory Access). In the PGDBG GUI, you can view the message queues by selecting the
Messages item under the Windows menu. This command can also have a P/t-set prefix (Section
1.15.6 P/t-set Notation) to specify a subset of processes and/or threads. Figure 1-14 shows an
example output of the mgdump command as seen in the GUI (the PGDBG text debugger produces
the same output).

When using the GUI, a subwindow is displayed with the message queue output. Within the
subwindow, you can select which process/threads to display with the Context Selector combo box
located at the bottom of the subwindow (e.g., Process! in Figure 1-14).

The message queue dump is only available for MPI application debugging on the CDK licensed
version of PGDBG. You may see the following error message if you invoke mgdump:

ERROR: MPI Message Queue library not found. Try setting
‘PGDBG_MQS LIB OVERRIDE’ environment variable.

If you see this message and you are using a CDK licensed version of PGDBG, then you may need
to set the PGDBG_MQS LIB OVERRIDE environment variable to the absolute path of the
libtvmpich.so or compatible library (normally located in $PGI/11ib).

The PGDBG Debugger 123

Figure 1-14: Messages Subwindow

B PGDBG Message Queues X
File Options
[1] modump :
MFI_COMM_WOELD
Comm_size 2
Comm_rank, 1
Fending sends: nane
Fending receives:
=]
Mon-blocking send
Status FPending I+ |
Source 0 (Shome/sw demos,TOOLS_DEMO/MPI mpi-0.07)
Tag O (0000000007
U=zer Buffer hffcdeal

Buffer Length 4 (OxOO00000)

lnexpected messages: nang

MPI_COMM_WORLD_caollective
Camm_size 2 =

| Reset || Close | Frocess 1 hd Update || Lock |

1.17.4 MPI Groups

PGDBG identifies each process by its COMMWORLD rank. In general, PGDBG currently
ignores MPI groups.

1.17.5 MPI Listener Processes

Entering Control-C (*C) from the PGDBG command line can be used to halt all running
processes. However, this is not the preferred method to use while debugging an MPI program.
Entering ~C at the command line, sends a STGINT signal to the debugger’s children. This signal
is never received by the MPI processes listed by the procs command (i.e., the initial and attached
processes), SIGINT is intercepted in each case by PGDBG. PGDBG does not attach to the MPI
listener processes that pair each MPI process. These processes handle 10 requests among other
things. As a result, a ~*C from the command line will kill these processes resulting in undefined
program behavior.

124 Chapter 1

It is for this reason, that PGDBG automatically switches to process wait mode none ('pgienv
procwait none') assoon as it attaches to its first MPI process. This allows the use of the halt
command to stop running processes, without the use of ~C. The setting of 'pgienv procwait
none' allows commands to be entered while there are running processes.

Note: halt cannot interrupt a wait by definition of wait. *C must be used for this, or careful use of
wait.

1.17.6 SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG
can also use ssh for secure environments. The environment variable PGRSH, should be set to ssh
or rsh, to indicate the communication method needed. The communication between the PGDBG
GUI client (Section 1.12 PGDBG Graphical User Interface) and the PGDBG server is not secure,
so use the command-line interface when using ss# for communication of remote PGDBG
components.

The PGDBG Debugger 125

Chapter 2
The PGPROF Profiler

This chapter introduces the PGPROF profiler. The profiler is a tool that analyzes data generated
during execution of specially compiled C, C++, F77, F9x and HPF programs. The PGPROF
profiler lets you discover which routines and lines were executed as well as how often they were
executed and how much of the total time they consumed.

The PGPROF profiler also allows you to profile multi-process HPF or MPI programs, multi-
threaded SMP programs (e.g., OpenMP or programs compiled with —Mconcur, etc.), or hybrid
multi-process programs employing multiple processes with multiple SMP threads for each
process. The multi-process information lets you select combined minimum and maximum process
data, or select process data on a process-by-process basis. Multi-threaded information can be
queried in the same way as on a per-process basis. This information can be used to identify
communications patterns, and identify the portions of a program that will benefit the most from
performance tuning.

2.1 Introduction

Profiling is a three-step process:

Compilation Compiler switches cause special profiling calls to be inserted in the code
and data collection libraries to be linked in.

Execution The profiled program is invoked normally, but collects call counts and
timing data during execution. When the program terminates, a profile data
file is generated (e.g., pgprof.out, gmon.out, etc.).

Analysis The PGPROF tool interprets the pgprof.out file to display the profile data
and associated source files. The profiler supports routine level, line level
and data collection modes. The next section provides definitions for these
data collection modes.

The PGPROF Profiler 127

2.1.1 Definition of Terms

Routine Level Profiling
Is the strategy of collecting call counts and execution times on a per routine
(e.g., subroutine, subprogram, function, etc.) basis.

Function Level Profiling
Synonymous with Routine Level Profiling.

Line Level Profiling
Execution counts and times within each routine are collected in addition to
routine level data. Line Level is somewhat of a misnomer because the
granularity ranges from data for individual statements to data for large
blocks of code, depending on the optimization level. At optimization level
0, the profiling is truly line level.

Basic Block At optimization levels above 0, code is broken into basic blocks, which are
groups of sequential statements with only one entry and one exit. Line level
profile data is collected on basic blocks rather than individual statements at
these optimization levels.

Virtual Timer A statistical method for collecting time information by directly reading a
timer which is being incremented at a known rate on a processor by
processor basis.

Data Set A profile data file is considered to be a data set.

Host The system on which the PGPROF tool executes. This will generally be the
system where source and executable files reside, and where compilation is
performed.

Target Machine The system on which a profiled program runs. This may or may not be the
same system as the host.

GUI Graphical User Interface. A set of windows, and associated menus, buttons,
scrollbars, etc., that can be used to control the profiler and display the
profile data.

Combo Box A combo box is a GUI component consisting of a text field and a list of text
items. In its closed or default state, it presents a text field of information
with a small down arrow icon to its right. When the down arrow icon is left
mouse clicked, the box opens and presents a list of choices for you to
select.

128 Chapter 2

Check Box

Radio Button

2.1.2 Compilation

A check box is a GUI component consisting of a square or box icon that
can be selected by left mouse clicking inside the square. The check box has
a selected and an unselected state. In its selected state, a check mark will
appear inside the box. The box is empty in its unselected state.

A radio button is a GUI component consisting of a circle icon that can be
selected by left mouse clicking inside the circle. The radio button has a
selected and an unselected state. In its selected state, the circle is filled in
with a solid color, usually black. The circle is empty or unfilled when the
button is in its unselected state.

The following list shows driver switches that cause profile data collection calls to be inserted and
libraries to be linked in the executable file:

—Mprof=func

—Mprof=lines

—Mprof=mpi

insert calls to produce a pgprof-.out file for function (routine) level data.

insert calls to produce a pgprof.out file which contains both routine and line
level data.

Link in MPI profile library which intercepts MPI calls in order to record
message sizes and to count message sends and receives. Both line-level and
function-level profiling are valid with this switch.

For example: —Mprof=mpi,func

Enable sample based profiling. Running an executable with this option will
produce a gmon.out profile data file. When working with sample based
profiles, it is important that PGPROF knows the name of the executable.
By default, PGPROF will assume that your executable is called a.out. To
indicate a different executable, use the —exe command line argument or the
Set Executable... option under the File menu in the GUIL See Section 2.1.4
Profiler Invocation and Initialization and 2.2 Graphical User Interface
for more information on changing the executable name.

Note: Not all profiler options are available in every compiler. Please consult your compiler’s

user guide for a complete list of profiling options. A list of available profiling options can also

be generated with the compiler’s —help switch.

The PGPROF Profiler

129

2.1.3 Program Execution

Once a program is compiled for profiling, it needs to be executed. The profiled program is
invoked normally, but while running, it collects call counts and/or time data. When the program
terminates, a profile data file is generated. Depending on the profiling method used, this data file
is called pgprof-out or gmon.out.

To profile an MPI program, use mpirun to execute the program which was compiled and linked
with the —Mprof=mpi switch. A separate data file is generated for each non-initial MPI process.
The pgprof.out file acts as the "root" profile data file. It contains profile information on the initial
MPI process and points to the separate data files for the rest of the processes involved in the
profiling run.

2.1.4 Profiler Invocation and Initialization

Running the PGPROF profiler allows the profile data produced during the execution phase to be
analyzed.

The PGPROF profiler is invoked as follows:

o

% pgprof [options] [datafile]

If invoked without any options or arguments, the PGPROF profiler looks for the pgprof.out data
file and the program source files in the current directory. The program executable name, as
specified when the program was run, is usually stored in the profile data file. If all program-related
activity occurs in a single directory, the PGPROF profiler needs no arguments.

If present, the arguments are interpreted as follows:

datafile A single datafile name may be specified on the command line. If you
are profiling an MPI application, then specifying a datafile that has
been generated for a non-initial MPI process is not recommended.
Using PGPROF, you can inspect profile information on a subset of
processes (if you so choose.)—s Read commands from standard input.
On hosts that have a GUI, this causes PGPROF to operate in a non-
graphical mode. This is useful if input is being redirected from a file or if
the user is remotely logged in to the host system.

—text Same as —s.

130 Chapter 2

—scale “files(s)”

—I sredir

—motif

—exe filename
-0 filename
—title string

-V

The PGPROF Profiler

Compare scalability of datafile with one or more files. You can specify a
list of files by enclosing the list within quotes and separating each filename
with a space. For example:

-scale “one.out two.out”

This example will compare the profiles one.out and two.out with datafile
(or pgprof.out by default). If you only specify one file, then you do not
need the quotes. If you are working with sample based profiles (e.g.,
gmon.out), then the executable for each profile should be the same for best
results. See also the Scalability Comparison... item under the File menu
(Section 2.2.3.1 File Menu).

Specify the source file search path. The PGPROF profiler will always look
for a program source file in the current directory first. If it does not find the
source file in the current directory, it will consult the search path specified
in sredir. The sredir argument is a string of one or more directories. When
specifying more than one directory, each directory should be separated with
a path separator. A path separator is platform dependent; a colon (:) on
Linux/Solaris, and a semicolon (;) on Windows. Directories will then be
searched in the order specified. When a directory with a filename that
matches a source file is found, that directory is used. Below is an example
for Linux/Solaris:

-I../src:STEPS

In the above example, the profiler first looks for source files in the current
directory, then it will look in the ../src directory, followed by the STEPS
directory. On Windows, you may specify this example the following way:

-I ..\src;STEPS

See also the Set Source Directory... item under the File menu (Section
2.2.3.1 File Menu).

Use the Motif GUI (Not available on all platforms).
Set the executable to filename (default is a.ouf).
Same as —exe.

Set the title of the application to string (GUI only).

Print version information.

131

—help Prints a list of available command line arguments.

—usage Same as —help.

2.1.5 Virtual Timer

This data collection method employs a single timer that starts at zero (0) and is incremented at a
fixed rate while the active program is being profiled. For multiprocessor programs, there is a timer
on each processor, and the profiler’s summary data (minimum, maximum and per processor) is
based on each processor’s time to run a function. How the timer is incremented and at what
frequency depends on the target machine. The timer is read from within the data collection
functions and is used to accumulate COST and TIME values for each line, function, and the total
execution time. The line level data is based on source lines; however, in some cases, there may be
multiple statements on a line and the profiler will show data for each statement.

Note: Due to the timing mechanism used by the profiler to gather data, information provided for
longer running functions will be more accurate than for functions that only execute for a short
percentage of the timer's granularity. Refer to Section 2.1.7 Caveats for more profiler limitations.

2.1.6 Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

BYTES For HPF and MPI profiles only. This is the number of message bytes sent
and received by the function or line.

BYTES RECEIVED
For HPF and MPI profiles only. This is the number of bytes received by the
function or line in a data transfer.

BYTES SENT For HPF and MPI profiles only. This is the number of bytes sent by the
function or line.

CALLS This is the number of times a function is called.

COST This is the sum of the differences between the timer value entering and
exiting a function. This includes time spent on behalf of the current
function in all children whether profiled or not.

COUNT This is the number of times a line or function is executed.

COVERAGE This is the percentage of lines in a function that were executed at least

132 Chapter 2

once.

LINE NUMBER For line mode, this is the line number for that line. For function mode, this
is the line number of the first line of the function.

MESSAGES For HPF and MPI profiles only. This is the number of messages sent and
received by the function or line.

RECEIVES For HPF and MPI profiles only. This is the number of messages received
by the function or line.

SENDS For HPF and MPI profiles only. This is the number of messages sent by the
function or line.

STMT ON LINE For programs with multiple statements on a line, data is collected and
displayed for each statement individually.

TIME This is only the time spent within the function or executing the line.
The TIME does not include time spent in functions called from this
function or line. TIME may be displayed in seconds or as a percent of
the total time.

TIME PER CALL
This is the TIME for a function divided by the CALLS to that function.
TIME PER CALL is displayed in milliseconds.

The data provided by virtual timer profiling-based collection allows you to analyze relationships
between functions and between processors.

2.1.7 Caveats

Collecting performance data for programs running on high-speed processors and parallel
processors is a difficult task. There is no ideal solution. Since programs running on these
processors tend to operate within large internal caches, external hardware cannot be used to
monitor their behavior. The only other way to collect data is to alter the program itself, which is
how this profiling process works. Unfortunately, it is impossible to do this without affecting the
temporal behavior of the program. Every effort has been made to strike a balance between
intrusion and utility, and to avoid generating misleading or incomprehensible data. It would,
however, be unwise to assume the data is beyond question.

The PGPROF Profiler 133

2.1.7.1 Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these
circumstances a function must consume at least a few seconds of CPU time to generate
meaningful line level times.

2.1.7.2 Optimization

At higher optimization levels, and especially with highly vectorized code, significant code
reorganization may have occurred within functions. Most line profilers deal with this problem by
disallowing profiling above optimization level 0. The PGPROF profiler allows line profiling at
any optimization level, and significant effort was expended on associating the line level data with
the source in a rational manner and avoiding unnecessary intrusion. Despite this effort, the
correlation between source and data may at times appear inconsistent. Compiling at a lower
optimization level or examining the assembly language source may be necessary to interpret the
data in these cases.

2.2 Graphical User Interface

The PGPROF Graphical User Interface (GUI) is invoked using the command pgprof. This
section describes how to use the profiler with the GUI on systems where it is supported. There
may be minor variations in the GUI from host to host, depending on the type of monitor available,
the settings for various defaults and the window manager used. Some monitors do not support the
color features available with the PGPROF GUI. The basic interface across all systems remains the
same, as described in this chapter, with the exception of the differences tied to the display
characteristics and the window manager used.

There are two major advantages provided by the PGPROF GUI.

Source Interaction

The PGPROF GUI lets you view the program source for any known
routine in the profiler whether or not line level profile data is available
simply by selecting the routine name. Since interpreting profile data usually
involves correlating the program source and the data, the source interaction
provided by the GUI greatly reduces the time spent interpreting data. The
GUI allows you to easily compare data on a per processor/thread basis, and
identify problem areas of code based on processor/thread execution time
differences for routines or lines.

134 Chapter 2

Graphical Display of Data
It is often difficult to visualize the relationships between the various
percentages and execution counts. The GUI allows bar graphs to be
displayed which graphically represent these relationships. This makes it
much easier to locate the ‘hot spots’ while scrolling through the data for a
large program.

2.2.1 The PGPROF GUI Layout

After invoking PGPROF, the profiler will try to load the profile datafile that you specified on the
command line (or a default pgprof-out). If no file was found, a file chooser dialog box will appear.
Choose a profile datafile from the list or select Cancel to choose no file.

When you open a profile datafile, the profiler populates the following areas in the GUI, shown
from top to bottom in Figure 2-1:

e Profile Summary — Below the “File...Settings...Help” menu bar is the profile summary
area. Following the keyword Profiled: you will find the executable name, date last
modified, and the amount of time consumed by the executable. You will also find the
number of processes if the application that you are profiling has more than one process.

e Profile Entry Combo Box — Below the Profile Summary is the Profile Entry Combo Box.
The string of characters displayed in this box is known as the current profile entry. This
entry corresponds to the data highlighted in the profile tables mentioned below. You can
change the current entry by entering a new entry or selecting an entry from the combo
box. Left mouse click on the down arrow icon to show a list of previously viewed entries
to choose from.

e Navigation Buttons — Use the left and right arrow buttons, located on the left of the
Profile Entry Combo Box, to navigate between previously viewed profile entries.

e Select Combo Box — This combo box is located to the right of the Profile Entry Combo
Box. Open the Select Combo Box to refine the criteria for displaying profile entries in the
tables mentioned below. By default, the selection is set to 4// profile entries.

e Top Left Table — The Top Left Table, located below the Navigation Buttons, displays the
static profile entry information. This includes filenames, routine names, and line numbers
of the profile entries. When viewing line level information, this table will also show the
source code if the source files are available. If this table has more than one entry in it,
then you will see a column labeled View. See the description on the Bottom Table below
for more information.

The PGPROF Profiler 135

e Top Right Table — The Top Right Table displays profile summary information for each
profile entry. To change what is displayed, select the Processes or View menus, discussed
in Sections 2.2.3.4 Processes Menu and 2.2.3.5 View Menu respectively. If you are
viewing profile information at the routine level, and you compiled your program with
—Mprof=lines or —pg, then you can double click the left mouse button to view its line
level profile information.

e Bottom Table — The Bottom Table displays detailed profile information for the current
profile entry. If you are profiling a multi-process program, then you will see a profile
entry for each process in this table. If you are profiling a multi-threaded (or multi-
process/multi-threaded) program, then you can view process or thread level profile
information. A Process/Thread Selector (combo box) will appear in the lower right hand
corner when profiling multi-threaded programs. Use this combo box to toggle between
thread, process, or process/thread profile information. This combo box is demonstrated in
Figure 2-2. This figure shows the Process/Thread Selector in its opened state. Three
choices are available: Processes, Threads, Process.Threads.

The heading in the leftmost column will read Process(es) by default. If you are profiling
a multi-threaded application, then the heading in the leftmost column will reflect
whatever is selected in the Process/Thread Selector. When the leftmost column is
displaying processes or threads, then each entry will contain integers that represent
process/thread IDs. When the leftmost heading is displaying processes and threads
(denoted Process(es). Threads in the column heading), then each entry is a floating-point
number of the form (Process_ID).(Thread ID). Following the process/thread ID, you
will see a filename, routine name, or line number enclosed in parentheses. This provides
additional ownership information of the process/thread. It also acts as a minor sort key.
See the discussion on Sort, Section 2.2.3.6 Sort Menu, for more information.

This table will display process/thread information for the current profile entry by default.
If you want to view other entries, use the View check boxes in the Top Left Table to
select other entries. The View check boxes are demonstrated in Figure 2-9 in Section
2.2.3.5 View Menu. This allows you to easily compare more than one process/thread in
the Bottom Table. When you Print the tables to a file or a printer, an entry with a checked
View box gets printed with each profile entry. Again, this allows for easy comparison of
more than one process/thread. See the Print option, under the File menu, in Section
2.2.3.1 File Menu for more information on printing.

e Profile Name — The Profile Name area is located in the lower left hand corner of the GUI. It is
preceded with the keyword Profile: This area displays the profile filename.

136 Chapter 2

2.2.1.1 GUI Customization

Figure 2-1 shows how the GUI will look when you bring it up for the very first time. The default
dimensions of the GUI are approximately 800 x 600. It can be resized in whatever fashion that
your window manager supports. The width of the Top Left and Right tables can be adjusted using
the grey vertical divider located between the two tables. The height of the Top Left, Right, and
Bottom tables can be adjusted using the grey horizontal divider. Both of these dividers can be
dragged in the direction shown by arrow icons located on each divider. You can also left mouse
click on these arrow icons to quickly “snap” the display in either direction.

After customizing your display, the GUI will remember the size of the main window and the
location of each divider for your next PGPROF session. If you do not wish to save these settings
when you exit PGPROF, then uncheck the Save Settings on Exit item under the Settings menu.
We will discuss the Settings menu in more detail in Section 2.2.3.2 Settings Menu.

The PGPROF Profiler 137

Figure 2-1: Profiler Window

[m] PGPROF - The Portland Group Compiler Technology X
File Settings 2

Profiled: a.out on Tue Jun 15 11:07¥:35 PDT 2004 for 405.4590254 seconds with 2 processes

@ | % | |pgpmf.uut@rhs.f@cumpute_rhs |v| Selact |ALL v| Processes Miew Sort

view| Line| Filename Function |y Pracess Count | Time

[|4 rhs.T compute_rhs| ;| (max) 202 TiEEsas . = 0%

O |4 |z_solve.f z_solve | tmax 20 PIooNiz: = 7%

[|4 |y_solve.T v_s0lve | max) 20 . -502 = 20%

[5 |x_solwe.f ¥_solve §§ {max) 20 JBOB1 = 18%

[4 |add.f add Cmax) 201 5.95514 = %

[0 |3 |exact_solution.T |exact_solut| | (max) [RED] 3.47793 = %

[J | 4 linitialize.t initialize |3 (max) 2z 2.54683 = %

[5 |exact_rhs.f exact_rhs | 5| (max) 0.905747 = 0%

(| 0 |bt.f btdstatichi (max) 0.097225 = 0%

[0 |set_constants. T set_constan i {max) 0.08247 = 0%

| O |initialize.f initialized §§ {maxd 0.082248 = 0%

[0 |0 |exact_rhs.f exact_rhshs | (maxd 0.082028 = 0%

[T 1o lerror.f rhs nornbst| E| (maxd 0.081542 = 0% ||
[« [e]] | fmay 1 0.081506 = 0% |||~
Sart By Time H Sart By Time

Processes |Time
1 (Compute_rhs) [202 e 543 - 50w -
0 {compute_rhs) [202 s o = 3% §
-l
Sort By Time

Profile: pgprof.out

138 Chapter 2

Figure 2-2: PGPROF with Visible Process/Thread Selector

(| PGPROF - The Portland Group Compiler Technology x
File Settings Help

Profiled: a.out on Tue Apr 06 15:36:49 PDT 2004 for O.278895 seconds with 2 processes

@ | % | |pgpmf.uut@umpmpi.l:@main@lz |'| Select [ALL '| Processes Wiew Sort

L]
view| Line| ampmpi.c@main || [Process | count | Time |
int i; 3 =
[MPI_Init(&argc, &argy J; Cmaxd I 1 [0.270801 = 974l
gethostname(hname, 327 ;
MPI_Comm_rank{MPT_COMM_WORLD, &myrank) ;
[l #nragna onp parallel Cmaxd L 1 [0.000528 = 0]
O {max) [] 4 [0.000084 = on
i
int i;
[for{i=0;i<3;i+{ {max) [| 4 [0.000013 = o%
{max) B 1 [0.000584 = 0n|
[» ||
Sort By Line Nao Sort By Line Nao

Frocesses. Threads Caount Time
0.0 {12} 1 0.270801 = O7% -
0.1 (12}] 0 = 0% a
0.2 {12) Q Q = 0% !
0.3 (123 5] [¢]
1.0 (12 1 | o.ooﬁProcesses

SThreads

Processes Threads

Processes. Threads =

Profile: pgprof. out

2.2.2 Profile Navigation

The profiler GUI is modeled after a web browser. The current profile entry can be thought of as
an address, similar to a web page address (or URL). This address is displayed in the Profile Entry
Combo Box; introduced in Section 2.2.1 The PGPROF GUI Layout. The address format follows:

(profileFilename) [@sourceFilename [@routineName [@lineNumber]]]

The only required argument of the address is the profile datafile (e.g., pgprof.out, gmon.out, etc.).

The PGPROF Profiler 139

Each additional argument is separated by an ‘@’. For example, consider Figure 2-3 where we
brought up a profile of an application with one routine called main. When you first bring up a
profile, the first entry in the Top Left and Right tables is selected (highlighted) by default. The
Profile Entry Combo Box reflects the selected entry by displaying its address. In this case, the
Profile Entry Combo Box reads pgprof.out.mpi.c@main. This says that the current profile
entry is the main routine located in file mpi . c. You can enter a different address in the Profile
Entry Combo Box using the above address format. As mentioned in Section 2.2.1 The PGPROF
GUI Layout, previously viewed profile entries can be selected with the Profile Entry Combo Box
or with the Navigation Buttons.

To change the current profile entry, left mouse click on a new entry in the Right Table. You can
also click on an entry in the Left Table, but there must be a corresponding entry in the Right Table.
If you double click the left mouse button on a profile entry, you will dive into the selected profile
entry. For example, let us assume that we compiled our program with —Mprof=lines and the
current profile entry is pgprof.out@mpi . c@main, as shown in Figure 2-3. If you double
click on the highlighted entry in the Right Table, the profiler will jump or dive to main’s line
level information. Figure 2-4 shows this example after double clicking on main.

Diving into the profile, by double clicking, works at higher levels of profiling too. For example, if
the current profile entry is pgprof .out, then double clicking on pgprof.out will show
you a list of profiled files and their profile information. Double clicking on a file from this list will
then take you to the routine level profiling information for that file, etc.

140 Chapter 2

Figure 2-3: Example Routine Level Profile

(| PGPROF - The Portland Group Compiler Technology x

Fila Settings

Help

Profiled: a.out on Thu May 06 11:06:45 PDT 2004 for ©0.818105 seconds with 4 processes

@ | % | |pgpmf.uut@mpi.l:@main | v|

Selact [ALL '| Processes Yiew Sort
4
Line| Filename | Funetion |} Process | count | Time
25 mpi.c nain (max) 1 | 0.818105 = 100% |
Sort By TROE—— — — e Sort By Time

Profile: pgprof. out

Processes Count Timea

0 tmaing [1 0.816105 = 100%

1 {main)] i 0.43R055 = 53%

2 (main) | L NG =057 = 3%

3 (main) [i |] 0.122365 = 15% 5
Sort By Time

The PGPROF Profiler

141

Figure 2-4: Example Line Level Profile

O PGPROF - The Portland Group Compiler Technology x
File Settings Halp

Profiled: a.out on Thu May 06 11:06:45 PDT 2004 for 0.818105 seconds with 4 processes

@ | » | |pgpmf.uut@mpi.l:@main@32 |'| Salect [ALL v| Processes Miew Sort

view| Line| mpi. c@main s Process | count Time
25 |{ :
26 |int numtasks,
27 numaorkers,
28 taskid,
29 dest,
30 index,
31 i, ;
[} 32 arravmsg = 1, L Cmasd 1 | 0.728951 = 29% |
33 indexnsg = 2, B
34 Source,
35 chunksize;
36 |Tloat data[ARRAYSIZE],
resylt [ARRAYSTIZET D | |
[-
Sort By Line Ma

Processes Count]Time

0 (322 1 | 0.728951 = 8O% a
1 (323 1 DNEEET - = 4o

2 32y 1 B 0. 204067 = 25 §
3 (322 1 [| 0.051519 = &%

=]

Sort By Process

Profile: pgprof.out

2.2.3 PGPROF Menus

As shown in Figures 2-1 through 2-4, there are five menus in the GUI: File, Settings, Help,
Processes, View, and Sort. Sections 2.2.3.1 File Menu through 2.2.3.6 Sort Menu describe each
menu in detail. Keystrokes, located next to menu items, represent keyboard short cuts for that
particular item.

142 Chapter 2

2.2.3.1 File Menu
The File menu contains the following items:

e New Window (control N) — Select this option to create a copy of the current profiler
window on your screen.

e Open Profile... - Select this option to open another profile. After selecting this menu
item, locate a new profile data file in a file chooser dialog box. Select the new file in
the dialog by double clicking the left mouse button on it. A new profile window will
appear with the selected profile. NOTE: You must first set the name of the profile’s
executable before opening a sample based profile (e.g., gmon.out). See the Set
Executable... option below for more details.

e Set Executable... - Select this option to choose the executable that you are profiling.
After selecting this menu item, locate the executable that you profiled in a file chooser
dialog box. Select the executable by double clicking the left mouse button on it. When
working with sample based profiles (e.g., gmon.out), the executable that you choose
must match the executable that you profiled. By default, the profiler assumes that your
executable is called a . out.

e Set Source Directory... - Select this option to set the location of the profiled
executable’s source files. The profiler will present you with a text field in a dialog box.
Enter one or more directories in this text field. Each directory is separated by a path
separator. The path separator is platform dependent; a colon (:) on Linux/Solaris and
a semicolon (;) on Windows. These directories act as a search path when the profiler
cannot find a source file in the current directory. Below is an example:

../src:STEPS

After entering the above string into the dialog box, the profiler will first search for
source files in the current directory, then in the ../src directory, and finally in the
STEPS directory. You can also set the directory through the —/ command line option
explained in Section 2.1.4 Profiler Invocation and Initialization. The same example on
Windows follows:

\sre;STEPS

The PGPROF Profiler 143

Scalability Comparison... - Select this option to open another profile for scalability
comparison. Follow the same directions for the Open Profile... option mentioned above.
The new profile will contain a Scale column in its Top Right table. You can also open
one or more profiles for scalability comparison through the —scale command line option
explained in Section 2.1.4 Profiler Invocation and Initialization. . See also Section 2.2.5
Scalability Comparison for more information on scalability.

Print... - The print option allows you to make a hard copy of the current profile data. The
profiler will combine the data in all three profile tables and send the output to a printer. A
printer dialog box will appear. You can select a printer from the Print Service Name
combo box. Click on the Print To File check box to send the output to a file. Other print
options may be available. However, they are dependent on your printer and the Java
Runtime Environment (JRE).

Print to File... - Same as Print... option except the output goes to a file. After selecting
this menu item, a save file dialog box will appear. Enter or choose an output file in the
dialog box. Click Cancel to abort the print operation.

2.2.3.2 Settings Menu

The Settings menu contains the following items:

144

Bar Chart Colors... - This menu option will open a color chooser dialog box and a bar
chart preview panel (Figure 2-5). There are four bar chart colors based on the percentage
filled and three bar chart attributes. The Filled Text Color attribute represents the text
color inside the filled portion of the bar chart. The Unfilled Text Color attribute
represents the text color outside the filled portion of the bar chart. The Background Color
attribute represents the color of the unfilled portion of the bar chart. Table 2-1 lists the
default colors.

To modify a bar chart or attribute color, click on its radio button. Next, choose a color
from the Swatches, HSB, or RGB pane. Press the left mouse button on the OK button to
accept the changes and close the dialog box. Click Reset to reset the selected bar chart or
attribute to its previously selected color. Closing the window will also accept the
changes. The GUI will remember your color selections for subsequent runs of PGPROF
unless you uncheck the Save Settings on Exit box (see discussion on this option below).

Font... - This menu option opens the Font Chooser dialog box (Figure 2-6). You can
choose a new font from a list of fonts in this dialog’s top combo box. You can also
choose a new font size from a list of sizes in this dialog’s bottom combo box. The font is
previewed in the Sample Text pane to the left. The font does not change until you left
mouse click OK. Click Cancel or close the dialog box to abort any changes. The default
font is monospace size 12.

Chapter 2

e Show Tool Tips — Select this check box to enable tool tips. Tool tips are small temporary
messages that pop-up when you position the mouse pointer over a component in the GUI.
They provide additional information on what a particular component does. Unselect this
check box to turn them off.

e Restore Factory Settings... - This option allows you to restore the default look and feel of
the GUI. The GUI will look similar to Figure 2-1 after selecting this option.

e Restore Saved Settings... - This option allows you to restore the look and feel of the GUI
to the previously saved settings. See the Save Settings on Exit option for more
information.

o Save Settings on Exit — When this check box is enabled, the GUI will save the current
look and feel settings when you exit. These settings include the size of the main window,
position of the horizontal/vertical dividers, the bar chart colors, the selected font, your
tools tips preference, and the options selected in the View menu. When you start the GUI
again on the same host machine, these saved settings are used. If you do not want to save
these settings on exit, then uncheck this box. Unchecking this box disables the saving of
settings for the current session only.

Table 2-1: Default Bar Chart Colors

Bar Chart Style/Attribute Default Color
1-25% Brown
51%-75% Orange
76%-100% Yellow

Filled Text Color Black
Unfilled Text Color Black
Background Color Grey

The PGPROF Profiler 145

146

Figure 2-5: Bar Chart Color Dialog Box

m PGPROF Bar Chart Colors

Swatches | HSE | RGE |

I 1117

0
|)) o o HEE
5 o |
5 o s 1 o
150 50 5 5
15 5 5 5
1 Y) o
EEEEEEEEEEEEEEE NN NN NN NN

Recent:

Ear Chart 5tyles

| 1001,

| & | 75%

cHEE o Nl &

D Unfilled Text Caolar

i Filled Text Color
2 Background Color

Qi

Feset

Chapter 2

Figure 2-6: Font Chooser Dialog Box
m| PGPROF Font Chooser x

monospaced -

Sample Text

12 =

0] Cancel

2.2.3.3 Help Menu
The Help menu contains the following items:

e PGPROF Help... - This option starts up PGPROF’s integrated help utility as shown in
Figure 2-7. The help utility includes an abridged version of this documentation. To find a
help topic, use one of the follow tabs in the left panel: The “book” tab presents a table of
contents, the “index” tab presents an index of commands, and the “magnifying glass” tab
presents a search engine. Each help page (displayed on the right) may contain hyperlinks
(denoted in underlined blue) to terms referenced elsewhere in the help engine. Use the
arrow buttons to navigate between visited pages. The printer buttons allow you to print
out the current help page.

o About PGPROF... - This option opens a dialog box with version and contact information
for PGPROF.

The PGPROF Profiler 147

Figure 2-7: PGPROF Help

m| PGPROF/STPROF Help x

JIRAED S

TR I -
=1 PGPROF/STPROF Lelp PGPROF /STPROF Help

@ [Introduction

D Cnmp”_amn ‘| PGPROF is a performance profiling tool for programs
[} Execution | cornpiled with the PGCC, PGCPF, PGF77, FGF90, PGHEF
[} Analysis il cornpilers. STPROF is a performance profiling tool for
©] PGPROFSTPROF GUI i| programs cormpiled with STCC and STCPF. The profilers allow

[} Comrmand Ling Argu vou to discover which functions and lines were executed as
[Profiler GUI Layout ¢ weell as how rach total tirne they consumed. The PGPROF
i profiler also allows you to profile multi-process HPF or MPI

Profile Mavigati :
1) braile (ewpeiler i prograrms, multi-threaded SMP programs opentdF or

([i0as | programs cormnpiled with -Mconcur), or hybrid rulti-process
[File Meny ‘| programs employing rmaltiple processes with multiple SMP
[Settings Menu ||} threads for each process. This information can be used to
[Help Menu “|identify comrmunication patterns and the portions of a el
[Processes Menu ||| Program that will benefit the most from performance tuning.
[view menu | Introduction
D Sart Menu B

D Selecting and Sorting -)
i| Profiling is a three-step process:

& Compilation - Cormpiler switches cause special
profiling calls to be inserted in the code and data
collection litraries to be linked in

[«

2.2.3.4 Processes Menu

The Processes menu is enabled for multi-process programs only. This menu contains three check
boxes: Min, Max, and Avg. They represent the minimum process value, maximum process value,
and average process value respectively. By default Max, is selected.

When Max is selected, the highest value for any profile data in the Top Right Table is reported.
For example, when reporting Time, the longest time for each profile entry gets reported when Max
is selected. When the Min process is selected, the lowest value for any profile data is reported in
the Right Table. AVG reports the average value between all of the processes. You can select none,
some, or all of these check boxes. When no check boxes are selected, the Top, Left and Right
Tables are empty. If the Process check box under the View menu is selected, then each row of data
in the Right Table is labeled max, avg, and min respectively.

148 Chapter 2

Figure 2-8 illustrates max, avg, and min with the Process check box enabled.

Figure 2-8: PGPROF with Max, Avg, Min rows

(| PGPROF - The Portland Group Compiler Technology x
File Settings Help

Profiled: a.out on Tue Jun 15 11:07:35 PDT 2004 for 405.490254 seconds with 2 processes

@ | % | |pgpmf.uut@rhs.f@l:umpute_rhs |v| Selact | ALL v| Processes Miew Sort
\-’iew| Line| Filenarme Functian : Process]Time |Messages

3| max) . = =2z || 3,237
O |4 irhs.f compute_rhs| ;|| {ava) A | 3,232

o ming = 3% 0 3,232

A (maxy 133 = 7% | 2,502
O |4 |z_solve.f z_salve 2 favg) 821 = /% =, 502

A ming 500 = or% g, 502

A ema) 3902 = 0% 0
O | 4 |y_solve.f w_solve A (aved . 28385 = 20% 0

| ¢mind L2205 - 0%]

Al (max) L8081 = 18% [
[5 |x_solve.fT ¥_solve o favgy L8518 = 18% [i]

Al tmind B055 - 18/]

Hema) [5.05514 < | 0 ||
[« o] caved | 5.51214 = 1/ | [=
Sart By Time : Sart By Time
Processes]Time unessages
1 (Compute_rhs) iE s = Gew ERFEER =
0 {compute_rhs) [T = 3% [| 3,232 a

Sort By Time

Profile: pgprof. out

2.2.3.5 View Menu

The View menu allows you to select which columns of data that you wish to view in the Top Lefz,
Top Right, and Bottom tables. This selection also affects the way that tables are printed to a file
and a printer (see Print in Section 2.2.3.1File Menu).

The following lists View menu items and their definition. Please note that not all items may be
available for a given profile.

The PGPROF Profiler 149

150

Count — Enables the Count column in the Top Right and Bottom tables. Count is
associated with the number of times this profile entry has been visited during execution
of the program. For function level profiling, Count is the number of times the routine was
called. For line level profiling, Count is the number of times a profiled source line was
executed.

Time — Enables the Time column in the Top Right and Bottom tables. The time column
displays the time spent in a routine (for function level profiling) or at a profiled source
line (for line level profiling).

Cost — Enables the Cost column in the Top Right and Bottom tables. Cost is defined as
the execution time spent in this routine and all of the routines that it called. The column
will contain all zeros if cost information is not available for a given profile.

Coverage — Enables the Cover column in the Top Right and Bottom tables. Coverage is
defined as the number of lines in a profile entry that were executed. By definition, a
profiled source line will always have a coverage of 1. A routine’s coverage is equal to the
sum of all its source line coverages. Coverage is only available for line level profiling.
The column will contain all zeros if coverage information is not available for a given
profile.

Messages — Enables the message count columns in the Top Right and Bottom tables. Use
this menu item to display total (MPI) messages sent and received for each profile entry.
This menu item contains Message Sends and Message Receives submenus for separately
displaying the sends and receives in the Top Right and Bottom tables. The message count
columns will contain all zeros if no messages were sent or received for a given profile.

Bytes — Same as Messages except message byte totals are displayed instead of counts.

Scalability — Enables the Scale column in the Top Right table. Scalability is used to
measure the linear speed-up or slow-down of two profiles. This menu contains two check
boxes: Metric and Bar Chart. When Metric is selected, the raw Scalability value is
displayed. When Bar Chart is selected, a graphical representation of the metric is
displayed. Scalability is discussed in Section 2.2.5 Scalability Comparison.

Processes...(control P) - This menu item is enabled when you are profiling an application
with more than one process. Use the Processes menu item to select individual processes
for viewing in the Bottom table. When you select this item, a dialog box will appear with
a text field. You can enter individual processes or a range of processes for viewing in this
text field. Individual processes must be separated with a comma.

Chapter 2

A range of processes must be entered in the form: [start] - [end]; where start represents
the first process of the range and end represents the last process of the range. For example:

0,2-16,31

This tells the profiler that you want to view process 0, process 2 through 16, and process 31.
The changes that you make to Processes remain active until you change them again or exit the
profiler. Leave the text field blank to view all of the processes in the Bottom table.

o Threads... (control T) - Same as Processes... except it selects the threads rather than the
processes viewed in the Botfom table.

e Filename — Enables the Filename column in the Top Left table.
e Line Number — Enables the Line column in the Top Left table.

e Name — Enables the Function (routine) name column in the Top Left table when viewing
function level profiling.

e Source — Enables the Source column in the Top Left table when viewing line level
profiles. If the source code is available, this column will display the source lines for the
current routine. Otherwise, this column will be blank.

o Statement Number — Enables the Stmt # column in the Top Right table. Sometimes more
than one statement is profiled for a given source line number. One example of this is a
“C” for statement. The profiler will assign a separate row for each substatement in the
Top Left and Right tables. In line level profiling, you will see duplicate line numbers in
the Line column. Each substatement is assigned a statement number starting at 0. Any
substatement numbered one or higher will have a °.” and their statement number tacked
onto the end of their profile address. For example, consider Figure 2-9. Source lines 7
and 15 both have multiple profile entries. As shown in the Profile Entry Combo Box, the
second entry for line 7 has the following address:

pgprof.outf@omp.c@main@7.1

This line number convention is also reflected in the Bottom table of Figure 2-9 where the
line number is enclosed in parentheses.

e Process — The menu option is enabled when more than one process was profiled for a
given program. When you select its check box, a column labeled Process is displayed in
the Top Right table. The values for the Process column depend on whatever was enabled
in the Processes menu discussed in Section 2.2.3.4 Processes Menu.

The PGPROF Profiler 151

e FEventl — Event4 — If your installation supports hardware event counters, then up to four
unique events can be displayed in the Top Right and Bottom tables. If you profiled with
hardware event counters, then one to four event menu items will be enabled and have
their name changed to their particular event. Each event can exist on some or all of the
executing threads in the profiled application.

Figure 2-9: Source Lines with Multiple Profile Entries

(] PGPROF - The Portland Group Compiler Technology x
File Settings Halp

Profiled: a.out on Fri Apr 30 11:05:58 PDT 2004 for 0.001391 seconds

@l%l |pgpruf.uut@ump.l:@main@?.l |V| Salact [ALL - Processes Miew Sort

q
\-’iewl Linel 0mp. c&@main B || STt #]Count]Time]
Wl | 7 |#pragna omp parallel] I i PoE4sT = 5% ||
v |7 : 1 [| 2 WO0.0000E7 = 6% |
8 i .
=l int mywid,i;
10 i
O |11 myid = omp_get_thread_num(); : 0 [| 2 J 0000049 = 4% |
12
O |13 Tor{i=0;i<2;i+)4{ : 0 [S PO00s S = 42% |
14 printf"HELLD %d, #dvn",getpil| @
¥l |15 3 : 0 [| 2 [C.000018 = 1%
[¥ i 1 [| 2 [0.000001 = 0% |
[« | -
Sort By Line Mo : Sort By Line Mo

Process]Count]Time
0 (73 | I 1 [OR000487 = 35% -
0 (7.1 [2 | | 0.000087 = 6% E
0 (153 [1 2 I 0.000018 = 1%
0 (15.1) [| z I 0.000001 = 0% ﬂ
Sort By Process
| Procass hd |

Profile: pgprof.out

The submenus Count, Time, Cost, Coverage, Messages, Bytes, and Eventl through Event4 contain
three check boxes for selecting how the data is presented in each column. The first check box
enables a raw number to be displayed. The second check box enables a percentage. The third
check box is a bar chart.

When you select percentage, you will see a percentage based on the global value of the selected
statistic. For example, in Figure 2-9, line 13 consumed 0.000579 seconds, or 42% of the total
time of 0.001391 seconds.

152 Chapter 2

When you select the bar chart, you will see a graphical representation of the percentage. The
colors are based on this percentage. For a list of default colors and their respective percentages,
see the Bar Chart Colors option under the Settings menu (Section 2.2.3.2 Settings Menu).

2.2.3.6 Sort Menu

The sort menu allows you to alter the order in which profile entries appear in the Top Left, Top
Right, and Bottom tables. The current sort order is displayed at the bottom of each table. In
Figure 2-9, the tables have a “Sort by” clause followed with “Line No” or “Process”. This
indicates the sort order is by source line number or by process number respectively. In
PGPROF, the default sort order is by Time for function level profiling and by Line No (source
line number) for line level profiling. The sort is performed in descending order, from highest to
lowest value, except when sorting by filename, function name, or line number. Filename,
function name, and line number sorting is performed in ascending order; lowest to highest value.
Sorting is explained in greater detail in Section 2.2.4 Selecting and Sorting Profile Data.

2.2.4 Selecting and Sorting Profile Data

Selecting and sorting affects what profile data is displayed and how it is displayed in PGPROF’s
Top Left, Top, Right, and Bottom tables. The Sort menu, explained in Section 2.2.3.6 Sort Menu,
allows you to change the sort order. The Select Combo Box, introduced in Section 2.2.1 The
PGPROF GUI Layout, allows you to select which profile entries are displayed based on certain
criteria.

2.2.4.1 Selecting Profile Data

By default, the profiler selects all profile entries for display in the Top Left and Right tables. To
change the selection criteria, left mouse click on the Select Combo Box next to the Select label.

The following options are available:
e All— Default. Display all profile entries.

e Count — Select entries based on a count criteria. When you select this entry, an
additional text field will appear with up and down arrow keys. Use the up and down
arrow keys to increase the minimum value for count that you wish to see. You can also
directly input your desired minimum in the text field. Profile entries with counts greater
than this number will be displayed in the tables. In Figure 2-10, we are selecting all
routines that have a count value of 2 or higher.

The PGPROF Profiler 153

e Coverage — Select entries based on coverage. This option is similar to Count except the
input value is a percentage. Profile entries with coverage that exceed the input
percentage are displayed in the tables.

e Profiled — Select all entries in the Top Left table that have a corresponding entry in the
Top Right table. See the discussion below for more information.

e Time — Same as Coverage except the criteria is based on percent of Time a profile entry
consumes rather than Coverage.

e Unprofiled — Select all entries in the Top Left table that do not have a corresponding entry
in the Top Right table. See the discussion below for more information.

When you select Profiled entries, you are selecting profile entries that have a corresponding entry
in both the Top Left and Right tables. A profile entry may be listed in the Top Left table but not in
the Top Right table. In this case, the entry is an Unprofiled entry. A Profiled entry is a point in the
program in which profile information was collected. Depending on the profiling method used, this
could be at the end of a basic block (e.g., -Mprof=(func|line|mpi) instrumented profiles) or when
the profiling mechanism saved its state (e.g., -pg sample based profiles).

154 Chapter 2

Figure 2-10: Selecting Profile Entries with Counts Greater Than 1

O PGPROF - The Portland Group Compiler Technology x
File Sattings Halp
Profiled: a.out on Tue Jun 15 11:07:35 PDT 2004 for 405.490254 seconds with 2 processes

& | > | Ipgprof.ou@rhs.f@compute_rhs |~ | Select|C0unt v|>| 1}% Processes View Sort

q

view| Line| Filename Function [y count Time

4 rhs. T conpute_rhs : 202 543 = 2% a

O 4 |z_solwe.f z_solve : 20 PE. 135 = 27

O |4 |v_solwe.f v_solwe 1 20 | R

d |5 ¥_solwe. ¥_solwe : 20 B 745581 = 18%

O [add, T add 3 201 5.95514 = %

] exact_solution.f |exact_solution | ,130 3.47793 = %

O |4 initialize.t initialize 2 2.84603 = %

0 4 adi. f adi 201 0.008733 = 0%

Sort By Tims Sort By Time-
Frocesses]Cuunt Time

1 (conpute_rhs) | 202 i.sm = 3% a
0 {compute_rhs) [202 s o2 = 3% s

Sort By Time

Profile: pgprof.out

2.2.4.2 Sorting Profile Data

To change the sort order, select the Sort menu and left mouse click on the radio button next to the
item that you wish to sort. For a definition of a particular item in this menu, see its description
under the View menu in Section 2.2.3.5 View Menu.

You may notice that the Botfom table will display one of the following messages when sorting by
Filename, Name, or Line Number:

e Sort By Process

e Sort By Processes

The PGPROF Profiler 155

o Sort By Threads
e Sort By Process.Threads
o Sort By Processes.Threads

When you see one of these messages in the Botfom table, then the profiler is treating the
process/thread number as the major sort key and the Filename, Name, or Line Number as the
minor sort key. This allows you to easily compare two different profile entries with the same
process/thread number. Use the check boxes under the View column in the Top Left table to
compare more than one profile entry in the Bottom table. This is demonstrated in Figure 2-9.

2.2.5 Scalability Comparison

PGPROF has a Scalability Comparison feature that allows you to measure linear speed-up or
slow-down between multiple executions of an application. You can measure scalability between
executions with a varying number of processes or threads. To use scalability comparison, you
should first generate two or more profiles for a given application. For best results, compare
profiles from the same application using the same input data. The number of processes and/or
threads used in each execution can be different. After generating two or more profiles, load one of
them with PGPROF. Select the Scalability Comparison item under the File menu and choose
another profile for comparison (Section 2.2.3.1 File Menu). A new profiler window will appear
with a column called Scale in its Top Right table (Section 2.2.3.5 View Menu).

Figure 2-11 shows a profile of an application that was run with one process. Figure 2-12 shows a
profile of the same application run with two processes. The profile in Figure 2-12 also has a Scale
column in its Top Right table. Each profile entry that has timing information has a Scale value.
The scale value measures the linear speed-up or slow-down for these entries across profiles. A
scale value of zero indicates that adding processes or threads did not improve the execution time.
A positive value means the time improved by that factor. A negative value means that the time
slowed down by that factor.

156 Chapter 2

Figure 2-11: Profile of an Application Run with 1 Process

[PGPROF - The Portland Group Compiler Technology X
File Settings Hzlp

Frotiled: a.out on Tue Jun 15 10:02:48 PDT 2004 for 690.056828 seconds

@ | % | |une.uut@rhs.f@cumpute_rhs |v| Select |ALL v| Processes Yiew Sort

iew| Line Filenarme Functian : Tirrne

O |4 |z_solve.T z_solve A B3.671 = 2i% a
[0 4 rhs.f conpute_rhs| i [T 75.292 = 26%

O |4 |yv_solve.T v_solue I 57.750 = 3%

[|5 |e_solve.f ¥_solve I 45,002 = 2%

J 4 |add. add I 7.58034 = ¥

| 3 |exact_solution.f |exact_solut 5.98351 = ¥

- 4 linitialize.f initialize 5.65018 = %

J 5 |exact_rhs. T exact_rhs 0.500804 = O

] 4 |error.T arror_norm 0.141142 = OX

[} a |br.f btfstaticti 0.139552 = 0%

O | o |z_solve.f z_solvefsta 0.106878 = 0%

O |0 |yv_solve.f v_solvebsta 0.106308 = 0%

[C 0.10612 = 0%
“4 0.105504 = 0% -
Sart By Time Sort By Time-
Process | Time

0 (compute_rhs) T i7E.782 . = can

Sort By Time-

Profile: one.out

The PGPROF Profiler 157

Figure 2-12: Profile with Visible Scale Column

O PGPROF - The Portland Group Compiler Technology

File Settings 2|

Profiled: a.out on Tue Jun 15 11:07¥:35 PDT 2004 for 405.4590254 seconds with 2 processes

@ | % | |pgpmf.uut@rhs.f@cumpute_rhs |v| Selact |ALL v| Processes Miew Sort

Yiew| Line Filenarme Function : Scale Tirne

[|4 \rhs.t compute_rhs . 543 = 3

[| 4 |z_solve.f z_solve T (TR EER = 21%

O | 4 |[v_solve.f w_solve - 0.75 B 75.3057 - 0%

J |5 |s_solve.f ¥_solve 2| RS | D

O |4 |add.f add - (O 1 5.05514 = %

[3 |exact_solution.f |exact_solut|: [1 3.47793 = %

[J | 4 linitialize.t initialize | 2.84683 = %

[|5 |exact_rhs.f exact_rhs | 0.005747 = 0OX

O | o |t prgstatichi|;|DNONE | 0.097225 = 0%

[|0 |set_constants.T |set_constan| | [oR 1 0.08247 = (%

[| o [initialize.f initializet) ;|| O 0.082249 = 0%

0 |0 |exact_rhs.T exact_rhshs| | N0 0.082028 = 0%

[1 rhs norphst| | N 0.081542 = (% i
[4] bl |l — > 0.081506 = 0% -~
Lgart By Time H Sart By Time-

Processes |Time
L (compute_rhs) [T E R -
0 {compute_rhs) N 1502 = % §
|
=
Sort By Time-

Profile: fhome/swidemosfpgprof. out

Below is PGPROF’s formula for computing Scalability:
P; = number of processes or threads used in first run of application
P, = number of processes or threads used in second run of application
where P, > P,
Time; = Execution time using P; processes or threads
Time, = Execution time using P, processes or threads

Scalability = [(Time; - Time,) +Time;] X (P, +P;)

158 Chapter 2

By definition, perfect linear speed-up will give you a scalability value of one. Anything greater
than one, gives you super speed-up. Similar negative values indicate linear slow-down and super
slow-down respectively. Bar charts in the Scale column show positive values with bars extending
from left to right and negative values with bars extending from right to left (Figure 2-12).

If you see a question mark (‘?’) in the Scale column, then PGPROF is unable to perform the
scalability comparison for this profile entry. This may happen if the two profiles do not share the
same executable or input data.

2.3 Command Language

The interface for non-GUI versions of the PGPROF profiler is a simple command language. This
command language is available in GUI versions of the profiler using the —s or —text option. The
language is composed of commands and arguments separated by white space. A pgprof>
prompt is issued unless input is being redirected.

2.3.1 Command Usage

This section describes the profiler’s command set. Command names are printed in bold and may
be abbreviated as indicated. Arguments contained in [and] are optional. Separating two or more
arguments by | indicates that any one is acceptable. Argument names in italics are chosen to
indicate what kind of argument is expected. Argument names that are not in italics are keywords
and should be entered as they appear.

dlisplay] [display options] | all | none
Specify display information. This includes information on minimum
values, maximum values, average values, or per processor data.

he[lp] [command]
Provide brief command synopsis. If the command argument is present only

information for that command will be displayed. The character "?" may be
used as an alias for Zelp.

hfistory] [size]
Display the history list, which stores previous commands in a manner
similar to that available with csh or dbx. The optional size argument
specifies the number of lines to store in the history list.

The PGPROF Profiler 159

160

l[ines] function [[>] filename]
Print (display) the line level data together with the source for the specified
function. If the filename argument is present, the output will be placed in
the named file. The ™' means redirect output, and is optional.

lo[ad] [datafile]
Load a new dataset. With no arguments reloads the current dataset. A
single argument is interpreted as a new data file. With two arguments, the
first is interpreted as the program and the second as the data file.

mferge] datafile
Merge the profile data from the named datafile into the current loaded
dataset. The datafile must be in standard pgprof.out format, and must have
been generated by the same executable file as the original dataset (no
datafiles are modified.)

profcess] processor_num
For multi-process profiles, specify the processor number of the data to
display.

plrint] [[>] filename]
Print (display) the currently selected function data. If the filename argument

is present, the output will be placed in the named file. The ">' means
redirect output, and is optional.

q[uit] Exit the profiler.

selfect] coverage | covered | uncovered | all [[<]cutoff]
This is the coverage mode variant of the select command. The cutoff
value is interpreted as a percentage and is only applicable to the
coverage option. The '<' means less than, and is optional. The default is
coverage < 100%.

selfect] calls | time/call | time | cost | all [[>] cutoff]
You can choose to display data for a selected subset of the functions.
This command allows you to set the selection key and establish a cutoff
percentage or value. The cutoff value must be a positive integer, and
for time related fields is interpreted as a percentage. The ™' means
greater than, and is optional. The default is time > 1%.

sifngleprocessl] process_num
For multiptocess profiles, focus on a single process.

Chapter 2

shfell] argl, arg2, argn...
For a shell using the given arguments.

so[rt] [by] calls | time/call | time | cost | name
(Profile Mode) Function level data is displayed as a sorted list. This
command establishes the basis for sorting. The default is t ime.

so[rt] [by] coverage | name
This is the coverage mode variant of the sort command. The default is
coverage, which causes the functions to be sorted based on
percentage of lines covered, in ascending order.

srcldir] directory
Add the named directory to the source file search path. This is useful if
you neglected to specify source directories at invocation.

s/tat] [no]min|[noJavg|[no]max|[no]proc|[no]all]
Set which process fields to display or do not display with the no
versions.

thfread] thread num.
Specify a thread for a multithreaded process profile.

tfimes] raw | pct
Specify whether time-related values should be displayed as raw
numbers or as percentages. The default is pct. This command does not
exist in coverage mode.

" Repeat previous command.

! num Repeat previous command numbered num in the history list.

\-num Repeat the num-th previous command numbered num in the history list.

! string Repeat the most recent previous command starting with string from the
history list.

The PGPROF Profiler 161

Index

AMDG64 Register Symbols.........ccccoevveveiecnnene 61
Audience Descriptioncoceevereenieneeneneennns 1
C++ Instance Methods......c.c.eeeveeinecninncecnen 23
Caveatsccoeieiiiiic 131
Clock Granularityccceceeeerereenieneenienenene 131
Command Set..........cceveeieieerinenieieieeeees 105
Compiler Options for Debuggingccceeueee 8
Configurable Stop Modeccceevverreeveriennnne 109
Conformance to Standards..........cccccecevverenenne 2
CONSANLS ..o 10
CoNVENtioNS.......cc.eruivuiieicieieieeeeseeeeeeeenns 4
Dynamic p/t-SCtccueeeeriereeierieieneeienieenenes 99
EVents ..o 76
Floating-Point Stack Registers Symbols........... 60
Fortran 90 modulecccceeeneenvncinecnnnnenes 22
General Register Symbols.........c.ccoceevevennnnen. 60
Global commands..........cccccevereneneniecincncnes 107
HPF ..ottt 2
Invocation and Initialization..........c.ccccovevevnnnee 8
Lexical blocks......c.ccveiveineininiciiciecee 13
Manual organization............cocceveeeeveercnenennennn. 3
MEMOTY ACCESS ...uveveenieiieienieeienieeeenieeieenieeans 44
Index

MPI
Debuggingcccoceveeveerieneneeieene 92,121
GIOUPS -eeenveieeviniieienieeieeieete e 123
LiStener processocueevvecvererrverreeruenuenes 123
Message qUEUEScceevveeneeeereeeniieeieenene. 122
MPI-CH SUPPOTT ..o 93
SUPPOTT it 87
Multilevel debug@ing..........cccvevvevierverienvennenns 96
Nested Subroutines.........ccecevevevvenverecrenennenn 21
OPenMP.......ooiiiiiiiiiieeee e 2
OpenMP and Linuxthread Support 86
Serial vs parallel regioncceveneeee. 119
P/t-set
Commands...........ooevevuerieieinineneene 100
CUITENE ..o 100
NOLALION ... 98
Parallel events.........occeveveeivienineneincncnene 115
Parallel Statementsccccceveeieincnenennns 117
if, else and while.........c.ooovveeviiiiiinen. 118
Return statements.............ccccceeivininenns 119

163

PGDBG

164

Fortran arrays.......c.cceceveeeevencenencnecnnne 20
Buttons.........cccooooiiiiiniii 74
Combo DOXEScovevverviniiiiieieencniceieenee 75
Command prompt..........cecevereeneneennenne 114
Command-Line Argumentsc..c...... 9
Commandsccceeeevveeeeveeeeeeeeeeneenns 10, 24
Commands Summary...........cceceevverernennenn 52
CONVETSIONS ... 46
Custom Subwindowcceeeevveenerinnnnee 83
Debug modesccceevevieeenienieieeeeieens 94
DebUZEET ..o 7
CH++ debuggingceeveveeveenenienenieiene 23
Disassembler Subwindow...........cceeuenene. 81
EVENtS ...ovvveeieiieeeeeeeeeeeeeeeee 15,28
EXPressions........cccocverenveveieenienenennenee 17
File Menu.....c.cccocevenineniciciiieenccee 70
Focus Panel......c.coccceeineennccnccneinnee 67
Fortran debugging...........ccceevevvevienennennen. 20
Fortran common............cccevevieiiniinncnnn. 21
Graphical features..........ccoceveevienerienenen. 90
Graphical user interface...........cccceceeenenee. 63
Help Menu.......ccoovveeienieieeceeieeeeeee 71
INVOCation.......coveveieiiininiiccececc e 8
INVOKING....eoveeiieiieieiieiceeeeeeeeee 90
Name of main routineccc.eceevvveeennene. 21
Main Windowcccccceveevvieinecineninnes 64
MeEmOry aCCeSScveveeverueeieniieieieerennes 44
Memory Subwindowcccccceeverernennen. 79
Messages Subwindow...........cccceevereenennene 78

Miscellaneous commands...............c......... 47
OPEIALOTS ..ottt 18, 20
Options Menucccevveeveriereerieneeieneeennn 74
Parallel commands.........c..cocceveverrcnncnne. 105
Parallel Debug Capabilitiesccceeene 86
Printing and setting variables.................... 37
Process control commands.............c.c........ 25
Process/Thread Gridcccceeerenennennnne. 67
Program I/O Window..........cccceeeveenuenne 65
Program locationsccccoeeeeveereneecencnne. 35
Register aCCess.....c.ovvvvrruenierierierreieenenns 43
Register symbols.........cocoeeveeevinincnennne. 12
Registers Subwindowccccccceveevienenne 82
SCOPE ettt 41
SCOPE TULES...covvieieieiieieieeeee e 11
Settings Menucoecevevenenenieenencnnens 70
Source code locationsccceevereuenene 12
Source Panel menus..........cccoeeveevreuienenennns 72
Statements..........cooevveiiiiiiiieiie 14
Status MEeSSAZES ...coveeveveeieerieeieenienieene 113
SubWindows.........ccoevveirineninieieieieeens 77
Symbols and expressions............c.ccceeeennene 39
Wait mOodesc.ccvvvevevveeniereircieeees 110

Index

PGPROFoooiiiiiiiiiiicceceeeeeene 135

Command Usage.......ccceeeveeveenenvecnennnes 157
Command-line options...........cccceerverunenn 128
Commands.......cc.coeeeveererenenenneiecnenne 157
Compilationceceveevenennieninienenes 127
Definition of terms.........cccoecevvevevruenenen 126
File. oo 141
Graphical User Interface...........cccoen.eee. 132
GUI customization...........ceceeveeveveeenennes 135
GUI Layout.....c.ccoceeveneeienenicninicnennee 133
HeElp e 145
Invocation.........ccceveeverinencniciccncnnne 128
MENUS ... 140
Optimizationcccceeeeerirenieneeieeeees 132
OVEIVIEW ... 125
Processes menu..........ccocooiiiiiiiiiinnnn 146
Profile Data........ccceoveivinincncciecnnn 130
Profiling Process.......cccceceeenvenenececnnnn 125
Scalability Comparison...............cceeveeeeee 154
SEtNG...uveveeeietieieie et 142
SOIt MENU.....ocuiiiiiiiicieiiieecreeeeene 151
Sorting Profile Data.........c.ccoceveveeinennee 153
VIEW MENU....coiriiieiiieieiieiieieeeeene 147
Process
Process and thread control...................... 108
Process control...........cccccoeviiincicnnnnnnn 121
Process level commands............c..c......... 105
Process/thread setcccccvverenerieiecnncns 97
Processes and threadsc.cccccceeeieincne 88
Process-only debugging..........ccccccveveuennene 96

Index

Process-parallel debugging...........ccceen.e. 91
Process-thread Sets..........cceevervvveereninnenee 28
Profile Navigation...........ccoecveeveriereerieneeeenens 137

Profiling
Basic blockccooevininicnieieinee 126
Command-level interface............ccccoeuee. 157
Compilationccceeeverreecienienrenieeieniens 127
COVETAZE ..ot nieeesiee st 126
Data SEt.....coeeeiriirieeieeeeeeeee e 126
Function levelccoceoneeniinnccnnenns 126
HOSt. .o 126
Line level.....coccoeeivninineneicncncncne 126
OptiMIZationceeeveereeeienienienenieienee 132
PGPROF ..., 125
SamPling......cccvevveeiecierierieieeieie e 126
Target machinececeeveveeneeneeniennene 126
Virtual timerocooevevcciecinenineennee 126
Virtual TImer ...c....ccevveerineeneinieeinienns 130
Program eXecution..........ccoeceeveviereerieneereenens 128
Register ACCESS ...ovvveveriieieiieieieeeeee e 43
Register Symbols.......ccceverieniniienenieienieiee 59
Related Publicationscccceeerevecvnrccneenennen 4
SCOPE ettt 41
Segment ReIStersccevverierieriereeienieeenne. 60
SIENALS .. 20
Source code 1ocationsc..oecevveereerecerenenenes 12
Special Purpose Register Symbols 61
SSE Register Symbols.........cccceeveeviereenereennnne. 62
SYMDBOIS ..ccuveiiiiiiieie e 10
Symbols and EXpressionsc.cccceeeeereneneene 39
165

Synchronization..........cceceevereesienenieeneneenienne 121 Thread-parallel debugging...............c........ 94

System Requirementsc.cccceceveneneneecrennns 6 Threads-only debuggingccccccveenenee. 95
TOIMS ..ot 7 Wait modeoooveieiiciiciciccce 110
Thread level commands...........cccooceeveenuernenen. 106 X86 Register Symbolscccceevvvenieneerirneennene 59
Threads

166 Index

	Table of Contents
	Preface
	Intended Audience
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Related Publications
	System Requirements

	The PGDBG Debugger
	1.1 Definition of Terms
	1.1.1 Compiler Options for Debugging

	1.2 Invocation and Initialization
	1.3 Command-Line Arguments
	1.4 Command Language
	1.4.1 Constants
	1.4.2 Symbols
	1.4.3 Scope Rules
	1.4.4 Register Symbols
	1.4.5 Source Code Locations
	1.4.6 Lexical Blocks
	1.4.7 Statements
	1.4.8 Events
	1.4.9 Expressions

	1.5 Signals
	1.5.1 Signals Used Internally by PGDBG

	1.6 Debugging Fortran
	1.6.1 Arrays
	1.6.2 Operators
	1.6.3 Name of Main Routine
	1.6.4 Fortran Common Blocks
	1.6.5 Nested Subroutines
	1.6.6 Fortran 90 Modules

	1.7 Debugging C++
	1.8 Core Files
	1.9 PGDBG Commands
	1.9.1 Commands
	1.9.1.1 Process Control
	1.9.1.2 Process-Thread Sets
	1.9.1.3 Events
	1.9.1.4 Program Locations
	1.9.1.5 Printing and Setting Variables
	1.9.1.6 Symbols and Expressions
	1.9.1.7 Scope
	1.9.1.8 Register Access
	1.9.1.9 Memory Access
	1.9.1.10 Conversions
	1.9.1.11 Miscellaneous

	1.10 Commands Summary
	1.11 Register Symbols
	1.11.1 X86 Register Symbols
	1.11.2 AMD64 Register Symbols

	1.12 PGDBG Graphical User Interface
	1.12.1 Main Window
	1.12.2 Source Panel
	1.12.3 Subwindows
	1.12.3.1 Memory Subwindow

	1.13 PGDBG: Parallel Debug Capabilities
	1.13.1 OpenMP and Linuxthread Support
	1.13.2 MPI Support
	1.13.3 Process & Thread Control
	1.13.4 Graphical Presentation of Threads and Processes

	1.14 Debugging Parallel Programs with PGDBG
	1.14.1 Processes and Threads
	1.14.2 Thread-Parallel Debugging
	1.14.3 Graphical Features
	1.14.4 Process-Parallel Debugging
	1.14.4.3 LAM-MPI Support

	1.15 Thread-parallel and Process-parallel Debugging
	1.15.1 PGDBG Debug Modes
	1.15.2 Threads-only debugging
	1.15.3 Process-only debugging
	1.15.4 Multilevel debugging
	1.15.5 Process/Thread Sets
	1.15.6 P/t-set Notation
	1.15.7 Dynamic vs. Static P/t-sets
	1.15.8 Current vs. Prefix P/t-set
	1.15.9 P/t-set Commands
	1.15.10 Command Set
	1.15.11 Process and Thread Control
	1.15.12 Configurable Stop Mode
	1.15.13 Configurable Wait mode
	1.15.14 Status Messages
	1.15.15 The PGDBG Command Prompt
	1.15.16 Parallel Events
	1.15.17 Parallel Statements

	1.16 OpenMP Debugging
	1.16.1 Serial vs. Parallel Regions
	1.16.2 The PGDBG OpenMP Event Handler

	1.17 MPI Debugging
	1.17.1 Process Control
	1.17.2 Process Synchronization
	1.17.3 MPI Message Queues
	1.17.4 MPI Groups
	1.17.5 MPI Listener Processes
	1.17.6 SSH and RSH

	The PGPROF Profiler
	2.1 Introduction
	2.1.1 Definition of Terms
	2.1.2 Compilation
	2.1.3 Program Execution
	2.1.4 Profiler Invocation and Initialization
	2.1.5 Virtual Timer
	2.1.6 Profile Data
	2.1.7 Caveats

	2.2 Graphical User Interface
	2.2.1 The PGPROF GUI Layout
	2.2.2 Profile Navigation
	2.2.3 PGPROF Menus
	2.2.4 Selecting and Sorting Profile Data
	2.2.5 Scalability Comparison

	2.3 Command Language
	2.3.1 Command Usage

	Index

